Radiation-induced processes within DNA in the gas phase - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Radiation-induced processes within DNA in the gas phase

Processus induits par les rayonnements ionisants au sein de l'ADN en phase gazeuse

Résumé

DNA damage is generally considered to be the most common and most important type of lesions in cells caused by ionizing radiation. While DNA damage caused by ionizing radiation poses serious risks to human health, it also makes radiation therapy a powerful tool for killing cancer cells and saving lives. For these reasons, a great deal of research has focused on radiation-induced processes within DNA. However, most of this work has been carried out in the condensed phase, which cannot remove the influence of the surrounding environment. In order to investigate the consequences of direct interaction of DNA with ionizing radiation at the molecular scale, we have irradiated a self-complementary DNA sequence in the gas phase with synchrotron radiation or ion beams, and analyzed the resulting product ions by mass spectrometry. Thanks to ion mobility spectrometry, we have established that deprotonated double strands of this sequence indeed form a double helix that is stable in an ion trap, if the charge state is higher than 5-. Then, we have investigated the consequences of specific photoabsorption occurring at the DNA oligonucleotide backbone in the gas phase. By monitoring non-dissociative single electron detachment from deprotonated precursors as a function of photon energy around the phosphorus K-edge, we have identified the X-ray spectral signature of selective photoabsorption at the phosphorus atoms located only in the backbone. We also detected abundant nucleobase fragment cations resulting from multiple electron detachment and thus demonstrated the charge, energy and hydrogen transfer from the backbone to the nucleobases. In the final part of the thesis, we present the results of irradiation of the DNA oligonucleotides by carbon ions in the gas phase. We have observed similar non-dissociative single electron detachment and similarly abundant positive fragment ions after carbon ion impact as in the case of irradiation by X-ray photons. More importantly, we have successfully irradiated a helical DNA double strand in the gas phase for the first time. 70% of the resulting ionic products come from non-dissociative single electron detachment, which is much higher than the case of single strands. Therefore, direct ionization of a DNA double helix after interaction with a single carbon ion does not lead to separation of the strands, which has important implications regarding DNA damage, notably in the context of hadrontherapy.
Les dommages à l’ADN sont généralement considérés comme les lésions cellulaires les plus courantes et le plus importantes parmi celles causées par les rayonnements ionisants. Ces dommages présentent de graves risques pour la santé humaine, mais ils font également de la radiothérapie un outil puissant pour tuer les cellules cancéreuses et sauver des vies. Pour ces raisons, de nombreuses recherches se sont concentrées sur les processus induits par les radiations au sein de l’ADN. Cependant, la plupart de ces travaux ont été réalisés en phase condensée, ce qui ne permet pas d'éliminer l'influence du milieu environnant. Afin d'étudier les conséquences de l'interaction directe de l'ADN avec les rayonnements ionisants à l'échelle moléculaire, nous avons irradié une séquence d'ADN auto-complémentaire en phase gazeuse avec un rayonnement synchrotron ou des faisceaux d'ions, et analysé par spectrométrie de masse les ions moléculaires produits. Grâce à la spectrométrie de mobilité ionique, nous avons établi que les doubles brins déprotonés de cette séquence forment bien une double hélice stable dans un piège à ions, si l'état de charge est supérieur à 5-. Ensuite, nous avons étudié les conséquences de la photoabsorption spécifique se produisant au niveau du squelette oligonucléotidique de l'ADN en phase gazeuse. En surveillant le détachement non dissociatif d'un seul électron des précurseurs déprotonés en fonction de l'énergie des photons autour du bord K du phosphore, nous avons identifié la signature spectrale des rayons X de la photoabsorption sélective au niveau des atomes de phosphore situés uniquement dans le squelette. Nous avons également détecté d’abondants cations de fragments de bases nucléiques résultant du détachement de plusieurs électrons et avons ainsi démontré le transfert de charge, d’énergie et d’hydrogène du squelette vers les bases nucléiques. Dans la dernière partie de la thèse, nous présentons les résultats de l'irradiation des oligonucléotides d'ADN par des ions carbone en phase gazeuse. Nous avons observé un détachement non dissociatif d'un seul électron et des ions fragments positifs tout aussi abondants après l'impact d'ions carbone, comme dans le cas de l'irradiation par des photons de rayons X. Plus important encore, nous avons réussi pour la première fois à irradier un double brin d’ADN hélicoïdal en phase gazeuse. 70% des produits ioniques résultants proviennent d’un détachement non dissociatif d’un seul électron, ce qui est beaucoup plus élevé que dans le cas des simples brins. Par conséquent, l’ionisation directe d’une double hélice d’ADN après interaction avec un seul ion carbone n’entraîne pas de séparation des brins, ce qui a des implications importantes concernant les dommages à l’ADN, notamment dans le contexte de l’hadronthérapie.
Fichier principal
Vignette du fichier
sygal_fusion_40148-liu-min_65fc0387aeaab.pdf (4.13 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04514774 , version 1 (21-03-2024)

Identifiants

  • HAL Id : tel-04514774 , version 1

Citer

Min Liu. Radiation-induced processes within DNA in the gas phase. Physics [physics]. Normandie Université, 2023. English. ⟨NNT : 2023NORMC292⟩. ⟨tel-04514774⟩
0 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More