Comprehensive study of the MoS2-Ketjenblack structure – electrochemical performance relationships in lithium sulfur batteries - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Comprehensive study of the MoS2-Ketjenblack structure – electrochemical performance relationships in lithium sulfur batteries

Etude des relations entre la structure et les performances électrochimiques de matériaux MoS2-Ketjenblack pour les batteries lithium-soufre

Résumé

Lithium-sulfur (Li-S) batteries are promising candidates for energy storage. Due to their high theoretical gravimetric and volumetric energy density of 2500 Wh.kg-1 and 2800 Wh.L-1 [1], they have the potential to practically store about 3 times more energy than Li-ion batteries. However, several challenges hinder their commercial development. Among those, the “shuttle-effect” is one of the major drawbacks and consists of a back-and-forth movement between electrodes of the dissolved intermediates polysulfides (Li2Sx, 2 < x < 8) giving rise to low active sulfur utilization, poor coulombic efficiency, and rapid capacity decay.In literature, many strategies have been proposed ranging from protective Li passive layers to electrolyte separator functionalization, and new positive electrode design using efficient polysulfides trapping materials (e.g. porous carbon, metal-organic frameworks, metal-based material such as oxides or hydroxides or even sulfides materials)2. Among them, MoS2 has proven to be a good adsorbent candidate to interact with polysulfide species3.This PhD project is dedicated to the design of supported MoS2-Ketenblack (Mo-KB) for Li-S positive electrode to tackle the “shuttle effect” phenomenon. We aimed to better understand the parameter playing a role on the polysulfide trapping mechanism to design an optimized Mo-KB electrode to i) mitigate polysulfide shuttling, and ii) favor their reduction into Li2S.Samples with MoS2 morphology, Mo loading, slab length variation were synthesized to modify the type and number of actives sites to study the impact on polysulfides interactions, and the resulting impact on the Li-S battery performances.To do so, we setup a new UV-Vis methodology using in situ probe to systematically quantify the polysulfides adsorption onto the developed materials. Indeed, this methodology limits the artefacts due to the setup compared to usual UV-Vis setup using a quartz cuvette and helps to understand the true effect of adsorbents nature (MoS2, MoS2-Ketjenblack, silica) on the adsorption phenomena and how it may modify the chemistry in solution of polysulfides (disproportionation and speciation). Finally, the sulfur impregnated porous Mo-KB powders were subsequently integrated into the formulation of sulfur-positive electrodes within a coin cell battery environment to assess their effectiveness as both PS trap and catalytic surface to convert polysulfides. The electrochemical measurements performed aimed to quantitatively determine whether it would enhance the electrochemical performance (capacity, faradic efficiency, power, cycle life) over time.References1. Seh, Z. W., Sun, Y., Zhang, Q. & Cui, Y. Designing high-energy lithium-sulfur batteries. Chemical Society reviews 45, 5605–5634; 10.1039/c5cs00410a (2016).2. Chen, Y. et al. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability. Advanced materials (Deerfield Beach, Fla.), e2003666; 10.1002/adma.202003666 (2021).3. Liu, Y., Cui, C., Liu, Y., Liu, W. & Wei, J. Application of MoS 2 in the cathode of lithium sulfur batteries. RSC Adv. 10, 7384–7395; 10.1039/C9RA09769D (2020).
Les batteries lithium-soufre (Li-S) sont des technologies de batterie prometteuses pour répondre à la demande croissante de stockage d’énergie. En raison de leur densité d’énergie théorique élevée de 2500 Wh.kg-1 en poids et de 2800 Wh.L-1 en volume [1], elles ont le potentiel de stocker pratiquement 3 fois plus d’énergie que les batteries Li-ion. Cependant, plusieurs défis entravent leur développement commercial. Parmi eux, l’effet de « navette redox » est l’un des principaux inconvénients de la technologie. Cette navette redox consiste en un mouvement d’aller-retour des polysulfures (Li2Sx, 2 < x < 8), composés intermédiaires générés lors de la dissolution du soufre entre les électrodes, entraînant une faible utilisation de soufre actif, une perte d’efficacité coulombique et une rapide dégradation de la capacité électrochimique au cours du temps.Dans la littérature, de nombreuses stratégies ont été proposées pour réduire ce phénomène, allant de l'utilisation de couches passives protectrices du lithium métal (Li), à la fonctionnalisation des séparateurs d'électrolyte, en passant par la conception de nouvelles électrodes positives utilisant des matériaux dont la fonction principale est de capturer efficacement les polysulfures (carbone poreux, structures métallo-organiques, matériaux à base de métaux tels que des oxydes ou des hydroxydes, voire des matériaux sulfures par exemple) [2]. Parmi les solutions proposées, le MoS2 s'est révélé être un bon candidat pour interagir spécifiquement avec les polysulfures [3].Ce projet de thèse est dédié à la conception d'électrodes positives de batteries Li-S, à base de MoS2-Ketenblack (Mo-KB), pour résoudre le phénomène de « navette redox ». Il vise à mieux comprendre les paramètres jouant un rôle dans le mécanisme de capture des polysulfures afin de concevoir des électrodes positive de Mo-KB optimisées pour i) réduire la diffusion des polysulfures et ii) favoriser leur réduction en Li2S.Différents échantillons de Mo-KB ont été synthétisés en veillant à varier la morphologie, la teneur, et la longueur des feuillets de MoS2 afin de modifier, à la fois, le type et le nombre de sites actifs disponibles et d'étudier l'impact sur les interactions avec les polysulfures et les performances des batteries Li-S qui en résulte.Pour ce faire, une nouvelle méthodologie UV-Vis, utilisant une sonde in situ pour quantifier systématiquement l'adsorption des polysulfures par les matériaux synthétisés, a été développée. En effet, cette méthodologie limite les artefacts générés lors de l’utilisation d’une configuration plus répandue : mesure UV-Vis avec cuvette en quartz. La méthodologie in situ contribue ainsi à comprendre l'effet réel de la nature des adsorbants (MoS2, MoS2-Ketjenblack, silice) sur les phénomènes d'adsorption et comment cela peut modifier la chimie des polysulfures en solution (réactions de dismutation et spéciation). Enfin, les échantillons poreux de Mo-KB, préalablement imprégnées de soufre, ont été intégrées dans la formulation d'électrodes positives Li-S afin d’évaluer leur efficacité d’adsorption et de conversion des polysulfures dans un système réel, au sein de pile-bouton. Des mesures électrochimiques ont été menées afin d’évaluer quantitativement l’impact de ces matériaux sur les performances électrochimiques (capacité, efficacité faradique, puissance, durée de vie du cycle) au fil du temps.References1. Seh, Z. W., Sun, Y., Zhang, Q. & Cui, Y. Designing high-energy lithium-sulfur batteries. Chemical Society reviews 45, 5605–5634; 10.1039/c5cs00410a (2016).2. Chen, Y. et al. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability. Advanced materials (Deerfield Beach, Fla.), e2003666; 10.1002/adma.202003666 (2021).3. Liu, Y., Cui, C., Liu, Y., Liu, W. & Wei, J. Application of MoS 2 in the cathode of lithium sulfur batteries. RSC Adv. 10, 7384–7395; 10.1039/C9RA09769D (2020).
Fichier principal
Vignette du fichier
DESOEURBRUN_2023_archivage.pdf (7.45 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04531769 , version 1 (04-04-2024)

Identifiants

  • HAL Id : tel-04531769 , version 1

Citer

Célestine Desoeurbrun. Comprehensive study of the MoS2-Ketjenblack structure – electrochemical performance relationships in lithium sulfur batteries. Chemical engineering. Université Grenoble Alpes [2020-..], 2023. English. ⟨NNT : 2023GRALI100⟩. ⟨tel-04531769⟩
65 Consultations
12 Téléchargements

Partager

Gmail Facebook X LinkedIn More