From learning-based identification to model-based control of robotic systems
De l'identification basée apprentissage profond à la commande basée modèle
Abstract
Fish swimming remains a complex subject that is not yet fully understood due to the inter-section of biology and fluid dynamics. Through years of evolution, organisms in nature have perfected their biological mechanisms to navigate efficiently in their environment and adaptto particular situations. Throughout history, mankind has been inspired by nature to innovateand develop nature-like systems. Biomimetic robotic fish, in particular, has a number of appli-cations in the real world and its control is yet to be optimized. Deep Reinforcement Learning showed excellent results in control of robotic systems, where dynamics is too complex to befully modeled and analyzed. In this thesis, we explored new venues of control of a biomimetic fish via reinforcement learning to effectively maximize the thrust and speed. However, to fully comprehend the newly-emerged data-based algorithms, we first studied the application of these methods on a standard benchmark of a control theory, the inverted pendulum with a cart. We demonstrated that deep Reinforcement Learning could control the system without any prior knowledge of the system, achieving performance comparable to traditional model-based con-trol theory methods. In the third chapter, we focus on the undulatory swimming of a roboticfish, exploring various objectives and information sources for control. Our studies indicate that the thrust force of a robotic fish can be optimized using inputs from both force sensors and cameras as feedback for control. Our findings demonstrate that a square wave control with a particular frequency maximizes the thrust and we rationalize it using Pontryagin Maximum Principle. An appropriate model is established that shows an excellent agreement between simulation and experimental results. Subsequently, we concentrate on the speed maximization of a robotic fish both in several virtual environments and experiments using visual data. Once again, we find that deep Reinforcement Learning can find an excellent swimming gait with a square wave control that maximizes the swimming speed.
La nage des poissons reste un sujet complexe qui n'est pas encore totalement compris en raison de son aspect interdisciplinaire qui mêle la biologie et dynamique des fluides. Au fil des millénaires, les organismes naturels ont perfectionné leur biologie pour naviguer efficacement dans leur environnement et s'adapter à tout type de situations. Tout au long de l'histoire, l'humanité s'est inspirée de la nature pour innover et développer des systèmes biomimétiques. Le poisson robotique, en particulier, trouve nombres d'applications dans le monde réel et son contrôle doit encore être optimisé. L'apprentissage par renforcement profond a donné d'excellents résultats dans le contrôle des systèmes robotiques, dont la dynamique est trop complexe pour être entièrement modélisée et analysée. Dans cette thèse, nous avons exploré de nouvelles voies de contrôle d'un poisson biomimétique via l'apprentissage par renforcement afin de maximiser efficacement la force de poussée et la vitesse de déplacement. Cependant, pour comprendre pleinement ces nouveaux algorithmes basés sur les données, nous avons d'abord étudié l'application de ces méthodes sur une référence standard de la théorie du contrôle, le pendule inversé sur un chariot. Nous avons démontré que l'apprentissage par renforcement profond pouvait contrôler le système sans aucune connaissance préalable du système, en obtenant des performances comparables aux méthodes traditionnelles de la théorie du contrôle basée sur un modèle. Dans le troisième chapitre, nous nous concentrons sur la nage ondulatoire d'un poisson robotique avec différents objectifs et sources d'information de contrôle. Nos études indiquent que la force de poussée d'un poisson robotique peut être optimisée en utilisant des données provenant à la fois de capteurs de force et d'une caméra comme retour d'information pour la commande. Nos résultats démontrent qu'une commande carrée avec une fréquence particulière maximise la poussée et nous la rationalisons en utilisant le principe du maximum de Pontryagin. Un modèle approprié est établi qui montre un excellent accord entre la simulation et les résultats expérimentaux. Ensuite, nous nous concentrons sur la maximisation de la vitesse d'un poisson robotique à la fois dans plusieurs environnements virtuels et dans des expériences utilisant des données visuelles.
Origin | Version validated by the jury (STAR) |
---|