On the stochastic response of rotor-blade models with Floquet modal theory : applications to time-dependent reliability of tidal turbine blades - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

On the stochastic response of rotor-blade models with Floquet modal theory : applications to time-dependent reliability of tidal turbine blades

Sur la réponse stochastique des modèles pale-rotor par la théorie modale de Floquet : applications à la fiabilité dépendante du temps des pales d'hydrolienne

Oscar Sánchez Jiménez
  • Fonction : Auteur
  • PersonId : 1374652
  • IdRef : 277033543

Résumé

The response of a deterministic rotating mechanical system under stochastic excitation is studied. A mechanical-probabilistic model is developed to combine the relevant characteristics of both aspects of the study: the behavior of this non-standard class of mechanical system and the random properties of correlated stochastic fields describing load processes. The results are applied to a reliability analysis of a reduced order model of a tidal turbine. Semi-analytic and empirical ( in the Monte-Carlo simulation sense) results are obtained, compared and contrasted. The results are framed with respect to the existing literature, and it is found that they provide an innovative treatment of the problem, in terms of the dynamical choices reflected in the model, in the presentation and interpretation of the modal aspects of the system, and in the type of stochastic inputs considered. We develop a dynamical model describing a broad class of mechanical system that models a rotor-blade structure. The model is informed by careful consideration of previous results, with the aim of constructing a reduced model that captures essential characteristics of the vibratory behavior of the structure. Lagrangian formalism is utilized to obtain the equations of motion. The presence of elastic components, which are discretized in a modal way, results in a system of ordinary differential equations with periodic coefficients. The Floquet theory of Linear time-periodic systems is applied on the deterministic dynamical model to synthesize an extension of traditional modal analysis to systems with periodic coefficients. The response of the system is formulated in terms of Floquet exponents and the associated Floquet periodic eigenvectors, from which the Floquet State Transition Matrix can be obtained. Several methods are applied to the modal study of the system, and a new time-frequency approach is proposed based on PGHW wavelets and its associated scalogram. Using an innovative notation to describe probabilistic moments of stochastic quantities, a moment propagation scheme is presented and exploited. The advantages of the treatment, particularly in the case of spatio-temporal stochastic fields, is in its applicability and systematic structure of development. This moment propagation strategy is coupled with a maximum entropy formulation to reconstruct the probability density function of the response and obtain important descriptors of the response, such as the Extreme Value Distribution. The moment propagation technique presented is applied to nonstationary processes. The results from Modal Floquet theory are integrated into this analysis. The problem of crossings of a certain threshold is considered for this type of nonstationary stochastic process. Their response is shown to yield a time-dependent reliability problem, which is resolved using the estimated EVD and then by numerical simulation.
Le sujet d'étude est la réponse d’un système mécanique déterministe en rotation et soumis à des sollicitations stochastiques. Pour cela, un modèle mécano-probabiliste est développé, résultant de la combinaison de deux éléments : le système mécanique au comportement dit non-standard, et les sollicitations, représentées par un champ stochastique corrélé. L'application vise l'analyse fiabiliste d’une hydrolienne, décrite par un modèle mécanique d’ordre réduit. Plusieurs méthodes sont présentées, comparées et leurs limitations sont mises en évidence. Les résultats obtenus sont contrastés avec ceux de la bibliographie. En particulier, l’aspect innovant se trouve dans le type de quantité mécanique modélisée, le traitement et l'interprétation des quantités modales, et le type de processus stochastique considéré comme sollicitation. Plus précisément, le modèle dynamique développé décrit une classe de systèmes mécaniques de type rotor-pale. Il a été construit par une combinaison judicieuse de résultats des domaines de l'éolien, l'hydrolien, la dynamique des rotors et des vibrations mécaniques. La formulation lagrangienne de la mécanique analytique est utilisée pour obtenir les équations du système dynamique. L'assemblage obtenu avec des composants élastiques linéaires, introduits avec leur comportement modal, produit des termes instationnaires, résultant dans des équations différentielles ordinaires à coefficients périodiques. Pour l'analyse de ce problème mécanique déterministe, l’analyse modale numérique traditionnelle est ici étendue grâce à la théorie de Floquet. La réponse du système est formulée en termes des exposants caractéristiques du système et des vecteurs propres de Floquet, ou vecteurs propres périodiques, permettant une représentation modale de la matrice de transition de Floquet. Diverses méthodes peuvent alors être appliquées pour l'analyse modale du système et on propose une nouvelle méthode basée sur la représentation temps-fréquence grâce aux ondelettes périodiques généralisées. Pour considérer les sollicitations aléatoires instationnaires et non-gaussiennes, on utilise une écriture innovante pour la propagation des moments. L’avantage de cette technique vient de l’aspect pratique et systématique des développements, ce qui est particulièrement avantageux lorsqu'elle est appliquée à des champs spatio-temporels instationnaires. En combinant cette technique avec une méthode d’estimation de la densité de probabilité basée sur le principe d’entropie maximale, nous arrivons à l’estimation de la distribution des valeurs extrêmes de la réponse cherchée en considérant le problème de dépassement d’un seuil par ce processus instationnaire, permettant ainsi la résolution du problème posé en termes de fiabilité dépendante du temps.
Fichier principal
Vignette du fichier
SANCHEZJimenezOscar.pdf (12.55 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04544344 , version 1 (12-04-2024)

Identifiants

  • HAL Id : tel-04544344 , version 1

Citer

Oscar Sánchez Jiménez. On the stochastic response of rotor-blade models with Floquet modal theory : applications to time-dependent reliability of tidal turbine blades. Mechanical engineering [physics.class-ph]. Normandie Université, 2023. English. ⟨NNT : 2023NORMIR39⟩. ⟨tel-04544344⟩
0 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More