Leveraging symmetries and low-rank structure of matrices and tensors in high-dimensional quantum chemistry problems - TEL - Thèses en ligne
Thèse Année : 2024

Leveraging symmetries and low-rank structure of matrices and tensors in high-dimensional quantum chemistry problems

Symétries et structures de rang faible des matrices et tenseurs pour des problèmes en chimie quantique

Résumé

This thesis presents novel numerical algorithms and conducts a comprehensive study of some existing numerical methods to address high-dimensional challenges arising from the resolution of the electronic Schrödinger equation in quantum chemistry. Focusing on two specific problems, our approach involves the identification and exploitation of symmetries and low-rank structures within matrices and tensors, aiming to mitigate the curse of dimensionality. The first problem considered in this thesis is the efficient numerical evaluation of the long-range component of the range-separated Coulomb potential and the long-range two-electron integrals 4th-order tensor which occurs in many quantum chemistry methods. We present two novel approximation methods. This is achieved by relying on tensorized Chebyshev interpolation, Gaussian quadrature rules combined with low-rank approximations as well as Fast Multipole Methods (FMM). This work offers a detailed explanation of these introduced approaches and algorithms, accompanied by a thorough comparison between the newly proposed methods. The second problem of interest is the exploitation of symmetries and low-rank structures to derive efficient tensor train representations of operators involved in the Density Matrix Renormalization Group (DMRG) algorithm. This algorithm, referred to as the Quantum Chemical DMRG (QC-DMRG) when applied in the field of quantum chemistry, is an accurate iterative optimization method employed to numerically solve the time-independent Schrödinger equation. This work aims to understand and interpret the results obtained from the physics and chemistry communities and seeks to offer novel theoretical insights that, to the best of our knowledge, have not received significant attention before. We conduct a comprehensive study and provide demonstrations, when necessary, to explore the existence of a particular block-sparse tensor train representation of the Hamiltonian operator and its associated eigenfunction. This is achieved while maintaining physical conservation laws, manifested as group symmetries in tensors, such as the conservation of the particle number. The third part of this work is dedicated to the realization of a proof-of-concept Quantum Chemical DMRG (QC-DMRG) Julia library, designed for the quantum chemical Hamiltonian operator model. We exploit here the block-sparse tensor train representation of both the operator and the eigenfunction. With these structures, our goal is to speed up the most time-consuming steps in QC-DMRG, including tensor contractions, matrix-vector operations, and matrix compression through truncated Singular Value Decompositions (SVD). Furthermore, we provide empirical results from various molecular simulations, while comparing the performance of our library with the state-of-the-art ITensors library where we show that we attain a similar performance.
Cette thèse présente de nouveaux algorithmes numériques et effectue une étude approfondie de certaines méthodes numériques existantes pour relever les défis de haute dimension résultant de la résolution de l'équation de Schrödinger électronique en chimie quantique. En se concentrant sur deux problèmes spécifiques, notre approche implique l'identification et l'exploitation des symétries et des structures de rang faible au sein de matrices et de tenseurs. Le premier problème abordé dans cette thèse concerne l'évaluation numérique efficace de la composante à longue portée du potentiel de Coulomb à séparation de portée et des intégrales à deux électrons à longue portée, un tenseur du quatrième ordre qui intervient dans de nombreuses méthodes de chimie quantique. Nous présentons deux nouvelles méthodes d'approximation. Cela est réalisé en s'appuyant sur l'interpolation Chebyshev, des règles de quadrature Gaussienne combinées à des approximations de rang faible ainsi que des méthodes rapides multipolaires (FMM). Ce travail offre une explication détaillée de ces approches et algorithmes introduits, accompagnée d'une comparaison approfondie entre les méthodes nouvellement proposées. Le deuxième problème abordé concerne l'exploitation des symétries et des structures de rang faible pour dériver des représentations efficaces en train de tenseurs des opérateurs impliqués dans l'algorithme DMRG. Cet algorithme est une méthode d'optimisation itérative précise utilisée pour résoudre numériquement l'équation de Schrödinger indépendante du temps. Ce travail vise à comprendre et interpréter les résultats obtenus par les communautés de physique et de chimie, et cherche à offrir des perspectives théoriques nouvelles qui, selon nos connaissances, n'ont pas reçu une attention significative auparavant. Nous menons une étude approfondie et fournissons des démonstrations, si nécessaire, pour explorer l'existence d'une représentation particulière en train de tenseurs, creuse par blocs, de l'opérateur Hamiltonien et de sa fonction d'onde associée. Cela est réalisé tout en maintenant les lois de conservation physiques, manifestées sous forme de symétries de groupe dans les tenseurs, telles que la conservation du nombre de particules. La troisième partie de ce travail est dédiée à la réalisation d'une bibliothèque prototype en Julia, pour l'implémentation de DMRG qui est conçue pour le modèle d'opérateur Hamiltonien de la chimie quantique. Nous exploitons ici la représentation en train de tenseurs, creuse par blocs, de l'opérateur et de la fonction d'onde (fonction propre). Avec ces structures, notre objectif est d'accélérer les étapes les plus coûteuses de la DMRG, y compris les contractions de tenseurs, les opérations matrice-vecteur, et la compression de matrices par décomposition en valeurs singulières tronquée. De plus, nous fournissons des résultats issus de diverses simulations moléculaires, tout en comparant les performances de notre bibliothèque avec la bibliothèque ITensors de pointe, où nous démontrons avoir atteint une performance similaire.
Fichier principal
Vignette du fichier
143925_BADREDDINE_2024_archivage.pdf (9.65 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04573940 , version 1 (13-05-2024)

Identifiants

  • HAL Id : tel-04573940 , version 1

Citer

Siwar Badreddine. Leveraging symmetries and low-rank structure of matrices and tensors in high-dimensional quantum chemistry problems. Numerical Analysis [cs.NA]. Sorbonne Université, 2024. English. ⟨NNT : 2024SORUS029⟩. ⟨tel-04573940⟩
122 Consultations
90 Téléchargements

Partager

More