Conception d'une sonde diagraphique neutronique dans le cadre de l'exploration et de l'exploitation minière de l'uranium - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Development of a neutron logging tool for uranium ore exploration and exploitation.

Conception d'une sonde diagraphique neutronique dans le cadre de l'exploration et de l'exploitation minière de l'uranium

Résumé

This PhD in the frame of CEA - ORANO Mining collaboration, aims to develop a new logging tool, based on neutron active interrogation, in the scope of uranium exploration and exploitation. A large amount of its production comes from In situ recovery mines, by leaching chemically the ore in the ground over hundreds of meters. It is mandatory to determine the amount of uranium available, but also the permeability of the sand, to evaluate the profitability. This geological quantity can be assessed from the measurement of the porosity hydrogen that is the volume fraction of water in the rock formation. It is possible to measure this one by using neutron probes. Uranium, and especially its 235 isotope, can also be measured with that kind of logging tools, if they rely on a pulsed neutron generator. This research leads to a new probe design that allows performing the both measurements with a unique cadmium-shielded-helium 3-proportional counter. The generator emits a 50 µs neutron burst every 5 ms (at 200 Hz). In the 800 µs after the salvo we can measure the not-fully-thermalised neutrons, thanks to the cadmium shield acting like a filter. The obtained count is inversely proportional to the hydrogen, and water, environment content. Over the following milliseconds, thermal neutrons of the rock formation will lead to 235U nuclei fissions, which emit in average 2.5 prompt fission neutrons. A chunk of these neutrons is emitted toward our counter, as the neutrons from the generator, fully thermalized after 800 µs, cannot cross the cadmium. Thanks to that double energy-time discrimination, it is possible to measure the prompt fission neutron signal contribution, which is proportional to the uranium concentration. As thermal neutrons are absorbed by the hydrogen content in the environment, we can use the porosity hydrogen measurement to correct the prompt fission neutrons signal from its effect. Furthermore, a parametric study has been conducting, using the Monte-Carlo simulation code MCNP 6.1, to compare the quantities that affect the measurements performances (e.g. diameter, standoff, casing thickness, casing, mudcake thickness, lithology). Finally, the new measurement methods feasibility has been validated through two experimental campaigns: in one hand, the capability of the electronics to handle input count rates in the 106 s-1 yield, during and right after a pulse of the neutron D-T generator. In the other hand, a laboratory model of the neutron probe has been built and tested in a dedicated calibration drum, filled with 1.6 t Fontainebleau sand. An agreement between experiment and computer simulations has been found, which validates the uranium concentration measurement and allows the understanding of the main components of the active background. This study highlighted the contribution of the oxygen 17 activation delayed neutrons, in the water saturated sandstone environments. The signal and noise analysis method were qualified, leading to the first estimations of in situ performances, like the detection limit of the uranium concentration measurement, from 10 to 200 ppm for 3 min of acquisition, for hydrogen porosities ranging respectively from 0 to 40%.
Cette thèse s’inscrit dans le cadre d’une collaboration entre le CEA et ORANO Mining avec pour objectif de développer une nouvelle sonde diagraphique basée sur l’interrogation neutronique active, dans le cadre de l’exploration et de l’exploitation de l’uranium dont une part importante de la production provient aujourd’hui de mines utilisant la lixiviation in situ. L’extraction chimique du minerai s’effectue directement dans le sol, sur plusieurs centaines de mètres, par injection et collection de solutions chimiques. Pour évaluer la rentabilité du puits, il est non seulement nécessaire de connaitre la quantité d’uranium disponible, mais aussi la perméabilité du milieu géologique. Cette dernière est déterminée en mesurant la « porosité hydrogène », à savoir la fraction volumique de la roche occupée par de l’eau, à l’aide de sondes qui émettent puis mesurent des neutrons ayant diffusé sur les noyaux d’hydrogène. L’uranium, et plus précisément son isotope 235, est aussi mesurable à l’aide de sondes équipées d’un générateur de neutrons pulsé. Ces travaux de recherche ont abouti à la conception d’une sonde permettant de réaliser ces deux mesures avec un unique compteur proportionnel à hélium 3 entouré de polyéthylène et blindé avec du cadmium. Des impulsions de neutrons de durée 50 µs sont émises par le générateur toutes les 5 ms (à 200 Hz). Puis, au cours des 800 µs qui suivent l’arrêt de chaque tir, on mesure les neutrons diffusés dans la formation qui ne sont pas thermalisés entièrement et peuvent encore franchir le blindage en cadmium. On obtient un comptage inversement proportionnel à la quantité d’hydrogène présente dans l’environnement. Sur les millisecondes qui suivent, les neutrons thermiques encore présents dans la roche font fissionner des noyaux d’235U, ce qui émet en moyenne 2.5 neutrons prompts par fission. Une partie de ces derniers sont mesurés par le bloc de détection, tandis que les neutrons du générateur, devenus thermiques 800 µs après l’arrêt du tir, ne peuvent plus franchir le blindage en cadmium. Grace à cette double discrimination, temporelle et énergétique, on peut mesurer le signal des neutrons prompts de fission qui est proportionnel à la concentration en uranium. Le flux de neutrons thermiques interrogateurs étant absorbé par l’hydrogène présent dans l’environnement, on utilise la porosité hydrogène mesurée pour corriger le signal des neutrons prompts de fission. Après avoir étudié par simulation Monte-Carlo les grandeurs affectant les performances de ces deux mesures (diamètre de forage, décentrage de la sonde, épaisseur et matériau de tubage, gangue de boue, lithologie), nous avons validé expérimentalement leur faisabilité en laboratoire. Tout d’abord, plusieurs chaines d’acquisition ont été testées pour pouvoir mesurer des taux de comptage instantanés de l’ordre de 106 s-1, pendant et juste après chaque tir du générateur de neutrons. D’autre part, une sonde maquette de laboratoire a été réalisée et testée dans un fût d’étalonnage rempli de 1.6 t de sable de Fontainebleau, spécialement conçu pour ces essais. Un bon accord entre l’expérience et les simulations a permis de valider la mesure de teneur en uranium et d’appréhender de nouveaux phénomènes, notamment l’activation de l’oxygène 17 responsable d’un bruit d’un fond actif significatif dans les formations siliceuses saturées en eau. La qualification des méthodes de calcul du signal et du bruit a été menée à bien, ce qui a permis d’estimer les performances prévues en situation réelle, notamment des limites de détection entre 10 et 200 ppm en 3 min de mesure pour des porosité hydrogènes respectives de 0 et 40%.
Fichier principal
Vignette du fichier
FONDEMENT_2023_archivage.pdf (21.25 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04583712 , version 1 (22-05-2024)

Identifiants

  • HAL Id : tel-04583712 , version 1

Citer

Valentin Fondement. Conception d'une sonde diagraphique neutronique dans le cadre de l'exploration et de l'exploitation minière de l'uranium. Physique [physics]. Université Grenoble Alpes [2020-..], 2023. Français. ⟨NNT : 2023GRALY076⟩. ⟨tel-04583712⟩
0 Consultations
0 Téléchargements

Partager

Gmail Mastodon Facebook X LinkedIn More