Ensemble density-functional theory : an ensemble perspective to target excited states and to palliate infamous deficiencies of standard ab initio methods - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Ensemble density-functional theory : an ensemble perspective to target excited states and to palliate infamous deficiencies of standard ab initio methods

La théorie de la fonctionnelle de la densité d'ensemble : une alternative pour décrire les états excités et pour pallier aux limitations des méthodes ab initio standard

Résumé

Over the last few decades, density-functional theory (DFT) has proved to be a rigorous approach for describing the ground-state of any electronic system. Due to a relatively low computational cost and the elaboration of sophisticated density-functional approximations (DFAs), DFT became the prevailing method used in electronic-structure calculations. Still, there remain numerous challenges that standard DFAs fail to overcome. These limitations are not attributed to failures of the theory itself but are rather due to deficiencies of the currently used approximate exchange-correlation (xc) functionals. There exists a generalization of ground-state DFT to fractional occupation numbers which allows for the description of systems with fractional number of electrons, PPLB-DFT. Such grand canonical extension of DFT can be achieved through the use of the ensemble formalism and enables direct extraction of charged excitation energies and other properties from a single DFT-like calculation. Unfortunately, the inability of commonly used exchange-correlation DFAs to mimic the infamous derivative discontinuity (DD) has proved to be highly detrimental to the prediction of charged excitations such as ionization potentials and electron affinities, yielding substantial errors, and known as the fundamental-gap problem. Regarding this matter, ensemble DFT (eDFT) offers a very appealing alternative benefiting from the possibility for explicitly weight-dependent xc-functionals to mimic the infamous DD through their derivatives with respect to the ensemble weights. DFT is known to possess deficiencies when it comes to computing charged and neutral excitations. The most popular way to access neutrally excited states within the scope of DFT is through its time-dependent extension, TD-DFT. Indeed, one would usually turn to TD-DFT to get accurate transition energies for low-lying excited-states with a relatively moderate computational cost. Although TD-DFT has been incredibly successful to access neutral excitation energies, it still suffers from some limitations and fails to provide accurate descriptions of some phenomena and properties. eDFT constitutes a promising alternative to TD-DFT for computing electronic excitation energies. In eDFT, it is possible to extract any neutral excitation energies of a N-electron system from a single calculation through the use of a Gross-Oliveira-Kohn (GOK) ensemble, with a similar computational cost and level of approximation for the xc-functional than in an usual DFT calculation. GOK-DFT is a less well-known but comparably rigorous alternative to TD-DFT where the large choice of ensemble weights and the weight-dependence of DFAs can significantly impact the accuracy of the energies. In DFT, it is well-known that the HOMO-LUMO gap can be a very poor estimation of the fundamental gap of the system, whereas eDFT may provide better predictions. Nevertheless, accessing charged excitations usually require to vary the number of electrons of the system, which can be problematic for some systems. Very recently, a new canonical eDFT formalism has been developed, the N-centered formalism, which allows for the extraction of charged excitation energies without any alteration of the number of electrons of the system. The behaviour of standard approximations in the scope of eDFT may provide additional insight into the intrinsic systematic errors of DFAs, such as the violation of the piecewise-linearity and constancy-condition exact properties. Indeed, poor descriptions of systems with fractional charges and fractional spins have shown to have major implications on the description of strongly correlated systems, which are known to suffer from large static-correlation errors, as well as on the prediction of asymptotic integer dissociations and band-gap predictions. These considerations may lead the way to further development and refinement of the DFT scheme towards both current and emerging applications.
Au cours des dernières décennies, la théorie de la fonctionnelle de la densité (DFT) s'est imposée comme une approche rigoureuse pour la description de l'état fondamental des systèmes électroniques. Grâce à son faible coût computationnel et à l'élaboration d'approximations sophistiquées pour la fonctionnelle d'échange-corrélation (xc-DFA), la DFT est devenue la méthode de choix pour le calcul de structure électronique. Néanmoins, il subsiste nombre de défis que la DFT ne parvient pas à surmonter. En réalité, ces carences ne sont pas le fruit de la théorie elle-même mais plutôt du fait de défauts intrinsèques des approximations utilisées. Il existe une formulation plus générale de la DFT pour les nombres fractionnaires d'occupation qui permet la description de systèmes avec nombre fractionnaire d'électrons, la PPLB-DFT. Cette formulation grand canonique de la DFT peut être mise en place à l'aide d'un formalisme d'ensemble et permet une extraction directe d'énergies d'excitation chargée et d'autres propriétés à partir d'un seul calcul de type DFT. Malheureusement, l'incapacité des DFAs à reproduire la fameuse dérivée discontinue (DD) s'est avérée être particulièrement préjudiciable pour la prédiction d'énergies d'excitation chargée, telles que les potentiels d'ionisation et les affinités électroniques, donnant lieu à des erreurs conséquentes, et connue comme le problème du gap fondamental. Dans ce contexte, la DFT d'ensemble (eDFT) offre une alternative très attrayante du fait de sa capacité à user de DFAs dépendantes du poids de l'ensemble pour reproduire la DD via leur dérivée. La DFT est connue pour montrer des limites vis-à-vis du calcul d'énergies d'excitation chargée et neutre. La procédure standard pour accéder aux états excités neutralement dans le cadre de la DFT est à travers son extension dépendante du temps, la TD-DFT. En effet, l'usage est de recourir à la TD-DFT pour obtenir des prédictions acceptables pour les énergies de transition des niveaux excités les plus bas, cela avec un coût computationnel relativement modéré. Bien que la TD-DFT se soit avérée incroyablement fructueuse pour accéder aux énergies d'excitation neutre, elle a également montré certaines limites lors de la description de certains phénomènes et propriétés physiques. En cela, l'eDFT constitue une alternative prometteuse à la TD-DFT pour le calcul des énergies d'excitation électroniques. En eDFT, il est possible d'extraire n'importe quelle énergie d'excitation neutre d'un système électronique en un seul calcul à l'aide d'un ensemble Gross-Oliveira-Kohn (GOK), et cela avec un coût computationnel et un niveau d'approximation pour la fonctionnelle d'xc, similaires à ceux de la DFT standard. La GOK-DFT est une alternative moins connue mais tout autant rigoureuse que la TD-DFT, où le large choix de poids de l'ensemble et la dépendance en poids de la fonctionnelle xc peuvent significativement influer sur la qualité des énergies calculées. En temps normal, accéder aux énergies d'excitation chargée nécessite de faire varier le nombre d'électrons du système, ce qui peut s'avérer problématique dans certains cas. Très récemment, un nouveau formalisme canonique a été développé, l'eDFT N-centrée, rendant possible l'extraction d'énergies d'excitation chargée sans altération du nombre d'électrons. Le comportement des DFAs standard dans le cadre de l'eDFT peut offrir une compréhension plus poussée de la nature intrinsèque des erreurs systématiques dont elles souffrent, telles que la violation des conditions exactes de linéarité par morceaux et de constance de l'énergie. En outre, la mauvaise description des systèmes avec charge et spin fractionnaires a prouvé avoir un impact majeur dans la description des systèmes fortement corrélés ainsi que dans les processus de dissociation et la prédiction de gaps d'énergie. Tout cela pourrait donner un nouvel essor au développement futur de la DFT et à des applications émergentes jusqu'alors inaccessibles.
Fichier principal
Vignette du fichier
2023TOU30312.pdf (3.42 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04585481 , version 1 (23-05-2024)

Identifiants

  • HAL Id : tel-04585481 , version 1

Citer

Clotilde Marut. Ensemble density-functional theory : an ensemble perspective to target excited states and to palliate infamous deficiencies of standard ab initio methods. Material chemistry. Université Paul Sabatier - Toulouse III, 2023. English. ⟨NNT : 2023TOU30312⟩. ⟨tel-04585481⟩
0 Consultations
0 Téléchargements

Partager

Gmail Mastodon Facebook X LinkedIn More