The dynamics of viral adaptation : theoretical and experimental approaches - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

The dynamics of viral adaptation : theoretical and experimental approaches

Dynamique de l'adaptation virale : approches théoriques et experimentales

Martin Guillemet
  • Fonction : Auteur
  • PersonId : 1394059
  • IdRef : 242190987

Résumé

Most living organisms on the tree of life can be infected by viruses. The ubiquity of viruses is driven by different factors including high mutation rates, high population sizes and low generation times, which allow for quick adaptation to very different host species. The dynamics of adaptation - the rate of change of the mean fitness of the viral population - results from the interplay between multiple evolutionary forces that may promote or hamper viral adaptation. But the interactions between these different factors may often be difficult to understand. During this PhD we developed a combination of theoretical and experimental approaches to disentangle the influence of some of these factors on viral adaptation.First, we explored the dynamics of viral adaptation to a homogeneous host population. We used Fisher’s Geometric Model of adaptation and studied the joint evolutionary and epidemiological dynamics of a viral population spreading in a host population. This modeled allowed us to explore the lethal mutagenesis hypothesis: is it possible to treat viral infections with mutagenic drugs to increase the mutation load of the viral population beyond a threshold that may result in the extinction of the within-host population? We show which parameters affect the critical mutation rate leading to viral extinction and we show how epidemiology and evolution can affect the transient within-host dynamics of the viral population when a single virus life-history trait (transmission rate) is under selection. We extend this modeling framework to study the joint evolution of transmission and virulence during the adaptation of an emerging pathogen. At the beginning of an epidemic, these two traits are expected to evolve independently but a trade-off may build up with viral adaptation.Second, we studied viral adaptation in heterogeneous host populations when the virus spreads among a diversified population of resistance host. We studied the evolutionary emergence of viruses: can viruses avoid extinction by the acquisition of escape mutations allowing them to infect some of the resistant hosts in the population? We developed a simple birth-death process to predict the probability of evolutionary emergence as a function of the composition of the host population. In particular, we show how the proportion of multiple resistant hosts can reduce the risk of pathogen evolutionary emergence. We put some of these predictions to the test using bacteriophages spreading in bacterial populations. We manipulate the diversity of CRISPR immunity in Streptococcus thermophilus bacteria and we confirm the key influence of multiple resistance on the risk of viral adaptation.Third, we also studied viral adaptation in time-varying environments where the host population is allowed to coevolve with the virus. In this experimental project we monitored the adaptation of bacteriophages as they coevolved with the CRISPR immunity of S. thermophilus bacteria. We track reciprocal adaptive changes in which bacteria acquire new layers of resistance (new spacers in the CRISPR array) and phages acquire new escape mutations in the corresponding protospacers. This experiment allows us to monitor the dynamics of viral adaptation across time and space. Interestingly, we find a significant asymmetries in competitive abilities among different bacterial strain in the absence of phage predation. This asymmetric competition has dramatic consequences on the maintenance of diversity of host resistance and on the coevolutionary dynamics with the virus. This thesis demonstrates the possibility to use experimental evolution with microbial microcosms to explore the validity of some theoretical predictions on the dynamics of viral adaptation. This experimental validation is particularly important if one wants to use evolutionary models to make public-health recommendations.
La plupart des organismes vivants peuvent être infectés par des virus. Cette omniprésence est due à différents facteurs, notamment des taux de mutation élevés, des populations de grande taille et des temps de génération courts, qui permettent une adaptation rapide à des espèces hôtes très différentes. La dynamique de l'adaptation des populations virales résulte de l'interaction entre de multiples forces évolutives. Au cours de cette thèse, nous avons développé une combinaison d'approches théoriques et expérimentales pour démêler l'influence de certains de ces facteurs sur l'adaptation virale.Tout d'abord, nous avons exploré la dynamique de l'adaptation virale face à une population hôte homogène. Nous avons utilisé le modèle géométrique de Fisher et étudié les dynamiques évolutive et épidémiologique d'une population virale en modèle intra-hôte. Ce modèle permet d'explorer l'hypothèse de la mutagenèse létale: est-il possible de traiter les infections virales avec des médicaments mutagènes pour augmenter la charge de mutation au-delà d'un seuil qui peut entraîner l'extinction de la population? Nous montrons quels paramètres affectent le taux de mutation critique conduisant à l'extinction virale et nous montrons comment l'épidémiologie et l'évolution peuvent affecter la dynamique transitoire de la population virale à l'intérieur de l'hôte lorsqu'un seul trait du cycle de vie du virus (taux de transmission) est soumis à la sélection. Nous étendons ce cadre de modélisation à l'étude de l'évolution conjointe de la transmission et de la virulence au cours de l'adaptation d'un pathogène émergent.Deuxièmement, nous avons étudié l'adaptation virale dans des populations d'hôtes hétérogènes lorsque le virus se propage parmi une population diversifiée d'hôtes résistants. Nous avons étudié l'émergence évolutive des virus : les virus peuvent-ils éviter l'extinction par l'acquisition de mutations d'échappement leur permettant d'infecter certains des hôtes résistants de la population? Nous avons développé un modèle de naissance/mort pour prédire la probabilité d'émergence évolutive en fonction de la composition de la population d'hôtes. En particulier, nous montrons comment la proportion d'hôtes multi-résistants peut réduire le risque d'émergence évolutive de l'agent pathogène. Nous mettons certaines de ces prédictions à l'épreuve en utilisant des bactériophages se propageant dans des populations bactériennes. Nous manipulons la diversité de l'immunité CRISPR dans les bactéries Streptococcus thermophilus et nous confirmons l'influence clé de la résistance multiple sur le risque d'adaptation virale.Troisièmement, nous avons également étudié l'adaptation virale dans des environnements variables dans le temps où la population hôte est autorisée à coévoluer avec le virus. Dans ce projet expérimental, nous avons suivi l'adaptation des bactériophages au fur et à mesure qu'ils évoluaient avec l'immunité CRISPR des bactéries S. thermophilus. Nous suivons les changements adaptatifs réciproques dans lesquels les bactéries acquièrent de nouvelles couches de résistance (nouveaux spacers dans le locus CRISPR) et les phages acquièrent de nouvelles mutations d'échappement dans les protospacers correspondants. Cette expérience nous permet de suivre la dynamique de l'adaptation virale dans le temps et l'espace. Nous avons noté des asymétries significatives dans les capacités de compétition entre les différentes souches bactériennes. Cette compétition asymétrique a des conséquences dramatiques sur le maintien de la diversité de la résistance de l'hôte et sur la dynamique coévolutive avec le virus. Cette thèse démontre la possibilité d'utiliser l'évolution expérimentale en microcosmes microbiens pour explorer la validité de certaines prédictions théoriques sur la dynamique de l'adaptation virale. Cette validation expérimentale est particulièrement importante si l'on veut utiliser des modèles évolutifs pour faire des recommandations de santé publique.
Fichier principal
Vignette du fichier
GUILLEMET_2023_archivage.pdf (9.51 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04618866 , version 1 (20-06-2024)

Identifiants

  • HAL Id : tel-04618866 , version 1

Citer

Martin Guillemet. The dynamics of viral adaptation : theoretical and experimental approaches. Agricultural sciences. Université de Montpellier, 2023. English. ⟨NNT : 2023UMONG020⟩. ⟨tel-04618866⟩
0 Consultations
0 Téléchargements

Partager

Gmail Mastodon Facebook X LinkedIn More