Thèse Année : 2024

Compression and federated learning : an approach to frugal machine learning

Compression et apprentissage fédéré : une approche pour l'apprentissage machine frugal

Résumé

“Intelligent” devices and tools are gradually becoming the standard, as the implementation of algorithms based on artificial neural networks is experiencing widespread development. Neural networks consist of non-linear machine learning models that manipulate high-dimensional objects and obtain state-of-the-art performances in various areas, such as image recognition, speech recognition, natural language processing, and recommendation systems.However, training a neural network on a device with lower computing capacity can be challenging, as it can imply cutting back on memory, computing time or power. A natural approach to simplify this training is to use quantized neural networks, whose parameters and operations use efficient low-bit primitives. However, optimizing a function over a discrete set in high dimension is complex, and can still be prohibitively expensive in terms of computational power. For this reason, many modern applications use a network of devices to store individual data and share the computational load. A new approach, federated learning, considers a distributed environment: Data is stored on devices and a centralized server orchestrates the training process across multiple devices.In this thesis, we investigate different aspects of (stochastic) optimization with the goal of reducing energy costs for potentially very heterogeneous devices. The first two contributions of this work are dedicated to the case of quantized neural networks. Our first idea is based on an annealing strategy: we formulate the discrete optimization problem as a constrained optimization problem (where the size of the constraint is reduced over iterations). We then focus on a heuristic for training binary deep neural networks. In this particular framework, the parameters of the neural networks can only have two values. The rest of the thesis is about efficient federated learning. Following our contributions developed for training quantized neural network, we integrate them into a federated environment. Then, we propose a novel unbiased compression technique that can be used in any gradient based distributed optimization framework. Our final contributions address the particular case of asynchronous federated learning, where devices have different computational speeds and/or access to bandwidth. We first propose a contribution that reweights the contributions of distributed devices. Then, in our final work, through a detailed queuing dynamics analysis, we propose a significant improvement to the complexity bounds provided in the literature onasynchronous federated learning.In summary, this thesis presents novel contributions to the field of quantized neural networks and federated learning by addressing critical challenges and providing innovative solutions for efficient and sustainable learning in a distributed and heterogeneous environment. Although the potential benefits are promising, especially in terms of energy savings, caution is needed as a rebound effect could occur.
Les appareils et outils “intelligents” deviennent progressivement la norme, la mise en œuvre d'algorithmes basés sur des réseaux neuronaux artificiels se développant largement. Les réseaux neuronaux sont des modèles non linéaires d'apprentissage automatique avec de nombreux paramètres qui manipulent des objets de haute dimension et obtiennent des performances de pointe dans divers domaines, tels que la reconnaissance d'images, la reconnaissance vocale, le traitement du langage naturel et les systèmes de recommandation.Toutefois, l'entraînement d'un réseau neuronal sur un appareil à faible capacité de calcul est difficile en raison de problèmes de mémoire, de temps de calcul ou d'alimentation. Une approche naturelle pour simplifier cet entraînement consiste à utiliser des réseaux neuronaux quantifiés, dont les paramètres et les opérations utilisent des primitives efficaces à faible bit. Cependant, l'optimisation d'une fonction sur un ensemble discret en haute dimension est complexe et peut encore s'avérer prohibitive en termes de puissance de calcul. C'est pourquoi de nombreuses applications modernes utilisent un réseau d'appareils pour stocker des données individuelles et partager la charge de calcul. Une nouvelle approche a été proposée, l'apprentissage fédéré, qui prend en compte un environnement distribué : les données sont stockées sur des appareils différents et un serveur central orchestre le processus d'apprentissage sur les divers appareils.Dans cette thèse, nous étudions différents aspects de l'optimisation (stochastique) dans le but de réduire les coûts énergétiques pour des appareils potentiellement très hétérogènes. Les deux premières contributions de ce travail sont consacrées au cas des réseaux neuronaux quantifiés. Notre première idée est basée sur une stratégie de recuit : nous formulons le problème d'optimisation discret comme un problème d'optimisation sous contraintes (où la taille de la contrainte est réduite au fil des itérations). Nous nous sommes ensuite concentrés sur une heuristique pour la formation de réseaux neuronaux profonds binaires. Dans ce cadre particulier, les paramètres des réseaux neuronaux ne peuvent avoir que deux valeurs. Le reste de la thèse s'est concentré sur l'apprentissage fédéré efficace. Suite à nos contributions développées pour l'apprentissage de réseaux neuronaux quantifiés, nous les avons intégrées dans un environnement fédéré. Ensuite, nous avons proposé une nouvelle technique de compression sans biais qui peut être utilisée dans n'importe quel cadre d'optimisation distribuée basé sur le gradient. Nos dernières contributions abordent le cas particulier de l'apprentissage fédéré asynchrone, où les appareils ont des vitesses de calcul et/ou un accès à la bande passante différents. Nous avons d'abord proposé une contribution qui repondère les contributions des dispositifs distribués. Dans notre travail final, à travers une analyse détaillée de la dynamique des files d'attente, nous proposons une amélioration significative des bornes de complexité fournies dans la littérature sur l'apprentissage fédéré asynchrone.En résumé, cette thèse présente de nouvelles contributions au domaine des réseaux neuronaux quantifiés et de l'apprentissage fédéré en abordant des défis critiques et en fournissant des solutions innovantes pour un apprentissage efficace et durable dans un environnement distribué et hétérogène. Bien que les avantages potentiels soient prometteurs, notamment en termes d'économies d'énergie, il convient d'être prudent car un effet rebond pourrait se produire.
Fichier principal
Vignette du fichier
142638_LECONTE_2024_archivage.pdf (8.66 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04649643 , version 1 (16-07-2024)

Identifiants

  • HAL Id : tel-04649643 , version 1

Citer

Louis Leconte. Compression and federated learning : an approach to frugal machine learning. Machine Learning [cs.LG]. Sorbonne Université, 2024. English. ⟨NNT : 2024SORUS107⟩. ⟨tel-04649643⟩
279 Consultations
286 Téléchargements

Partager

More