Pseudo-healthy image reconstruction with deep generative models for the detection of dementia-related anomalies
Reconstruction d'images pseudo-saines à l'aide de modèles génératifs profonds pour la détection d'anomalies liées à la démence
Résumé
Neuroimaging has become an essential tool in the study of markers of Alzheimer's disease. However, analyzing complex multimodal brain images remains a major challenge for clinicians. To overcome this difficulty, deep learning methods have emerged as a promising solution for the automatic and robust analysis of neuroimaging data. In this thesis, we explore the use of deep generative models for the detection of anomalies associated with dementia in 18F-fluorodesoxyglucose positron emission tomography (FDG PET) data. Our method is based on the principle of pseudo-healthy reconstruction, where we train a generative model to reconstruct healthy images from pathological data. This approach has the advantage of not requiring annotated data, which are time-consuming and costly to acquire, as well as being generalizable to different types of anomalies. We chose to implement a variational autoencoder (VAE), a simple model, but that proved its worth in the field of deep learning. However, assessing the performance of our generative models without labeled data or ground truth anomaly maps leads to an incomplete evaluation. To solve this issue, we have introduced an evaluation framework based on the simulation of hypometabolism on FDG PET images. Thus, by creating pairs of healthy and diseased images, we are able to assess the model's ability to reconstruct pseudo-healthy images. In addition, this methodology has enabled us to define new metrics for assessing the quality of reconstructions obtained from generative models. The evaluation framework allowed us to carry out a comparative study on twenty VAE variants in the context of FDG PET pseudo-healthy reconstruction. The proposed benchmark enabled us to identify the best-performing models for detecting dementia-related anomalies. Finally, several significant contributions have been made to open-source software. A PET image processing pipeline has been integrated into the Clinica software. In addition, this thesis gave rise to numerous contributions to the development of the ClinicaDL software, including its improvement, the addition of new functionalities, software maintenance and participation in project management.
La neuroimagerie est devenue un outil essentiel dans l'étude des marqueurs de la maladie d'Alzheimer. Cependant, l'analyse de ces images complexes provenant de différentes modalités d'imagerie cérébrale reste un défi majeur pour les cliniciens. Pour surmonter cette difficulté, les méthodes de deep learning ont émergé comme une solution prometteuse pour l'analyse automatique et robuste des données de neuroimagerie. Dans cette thèse, nous explorons l'utilisation de modèles génératifs profonds pour la détection d'anomalies associées à la démence dans les données de tomographie par émission de positons au 18F-fluorodésoxyglucose (TEP au FDG). Notre méthode repose sur le principe de la reconstruction pseudo-saine, où nous entraînons un modèle génératif à reconstruire des images saines à partir de données pathologiques. Cette approche présente l'avantage de ne pas nécessiter de données annotées, qui sont longues et couteuses à acquérir, ainsi que d'être généralisable à différents types d'anomalies. Nous avons choisi d'implémenter un autoencodeur variationnel (VAE), un modèle simple mais qui a fait ses preuves dans le domaine du deep learning. Cependant, analyser la performance de nos modèles génératifs sans disposer de données labellisées ou de cartes d'anomalies mène à une évaluation incomplète. Pour résoudre ce problème, nous avons mis en place un cadre d'évaluation basé sur la simulation d'hypométabolisme dans les images de TEP au FDG. Ainsi, en créant des paires d'images saines et pathologiques, nous sommes en mesure d'évaluer la capacité du modèle à reconstruire des images pseudo-saines. De plus, cette méthodologie nous a permis de définir de nouvelles métriques pour évaluer la qualité des reconstructions générées par les modèles génératifs. Le cadre d'évaluation a rendu possible une étude comparative sur une vingtaine de variantes du VAE dans le contexte de la reconstruction pseudo-saine de TEP au FDG. Cela nous a permis d'identifier les modèles les plus performants pour la détection des anomalies liées à la démence. Enfin, plusieurs contributions significatives ont été apportées à des logiciels open-source. Un pipeline de traitement d'images TEP a été intégré au logiciel Clinica. De plus, cette thèse a donné lieu à de nombreux apports au logiciel ClinicaDL, avec notamment l'amélioration de sa structure, l'ajout de nouvelles fonctionnalités, la maintenance du logiciel, ou encore la participation à la gestion du projet.
Origine | Version validée par le jury (STAR) |
---|