Rational actions of infinitesimal group schemes - TEL - Thèses en ligne
Theses Year : 2024

Rational actions of infinitesimal group schemes

Actions rationnelles de schémas en groupes infinitésimaux

Bianca Gouthier
  • Function : Author
  • PersonId : 1416052
  • IdRef : 280289278

Abstract

This thesis focuses on the study of (rational) actions of infinitesimal group schemes, with a particular emphasis on infinitesimal commutative unipotent group schemes and generically free actions and faithful actions. For any finite k-group scheme G acting rationally on a k-variety X, if the action is generically free then the dimension of Lie(G) is upper bounded by the dimension of the variety. We show that this is the only obstruction when k is a perfect field of positive characteristic and G is infinitesimal commutative trigonalizable. If G is unipotent, we also show that any generically free rational action on X of (any power of) the Frobenius kernel of G extends to a generically free rational action of G on X. Moreover, we give necessary conditions to have faithful rational actions of infinitesimal commutative trigonalizable group schemes on varieties, and (different) sufficient conditions in the unipotent case over a perfect field. Studying faithful group scheme actions on a variety X yields information on representable subgroups of the automorphism group functor AutX of X. For any field k, PGL2,k represents the automorphism group functor of P1 k and thus subgroup schemes of PGL2,k correspond to faithful actions on P1 k. Moreover, PGL2,k(k) coincides with the Cremona group in dimension one, i.e. birational self-maps of P1 k, since any rational self-map of a projective non-singular curve extends to the whole curve. In positive characteristic, the situation is completely different if we consider rational actions of infinitesimal group schemes. Most of the faithful infinitesimal actions on the affine line do not extend to P1 k. If the characteristic of a field k is odd, any infinitesimal subgroup scheme of PGL2,k lifts to SL2,k. This is not true in characteristic 2 and, in this case, we give a complete description, up to isomorphism, of infinitesimal unipotent subgroup schemes of PGL2,k. Finally, we prove a result that gives an explicit description of all infinitesimal commutative unipotent k-group schemes with one-dimensional Lie algebra defined over an algebraically closed field k, showing that there are exactly n non-isomorphic such group schemes of fixed order pn.
Cette thèse porte sur l’étude des actions (rationnelles) des schémas en groupes infinitésimaux, avec un accent particulier sur les schémas en groupes infinitésimaux commutatifs unipotents et les actions génériquement libres et les actions fidèles. Pour tout k-schéma en groupes fini G agissant rationnellement sur une k-variété X, si l’action est génériquement libre, alors la dimension de l’algèbre Lie(G) est majorée par la dimension de la variété. Nous montrons que c’est la seule obstruction lorsque k est un corps parfait de caractéristique positive et que G est infinitésimal commutatif trigonalisable. Si G est unipotent, nous montrons aussi que toute action rationnelle génériquement libre sur X du noyau de (toute puissance du) Frobenius de G s’étend à une action rationnelle génériquement libre de G sur X. De plus, nous donnons des conditions nécessaires pour avoir des actions rationnelles fidèles de schémas en groupes infinitésimaux commutatifs trigonalisables sur des variétés, et des conditions suffisantes (différentes) dans le cas unipotent sur un corps parfait. L’étude des actions fidèles des schémas en groupes sur une variété X fournit des informations sur les sous-groupes représentables du foncteur-groupe des automorphismes AutX de X. Pour tout corps k, PGL2,k représente le foncteur-groupe des automorphismes de P1 k et donc les sous-schémas en groupes de PGL2,k correspondent aux actions fidèles sur P1 k. De plus, PGL2,k(k) coïncide avec le groupe de Cremona en dimension un, c’est-à-dire les morphismes birationnels de P1 k, puisque toute application rationnelle d’une courbe projective non singulière dans elle-même s’étend à la courbe entière. En caractéristique positive, la situation est complètement différente si l’on considère les actions rationnelles de schémas en groupes infinitésimaux. La plupart des actions infinitésimales fidèles sur la droite affine ne s’étendent pas à P1 k. Si la caractéristique d’un corps k est impaire, tout sous-schéma en groupes infinitésimal de PGL2,k se relève à SL2,k. Ceci n’est pas vrai en caractéristique 2 et, dans ce cas, nous donnons une description complète, à isomorphisme près, des sous-schémas en groupes infinitésimaux unipotents de PGL2,k. Enfin, nous prouvons un résultat qui donne une description explicite de tous les k-schémas en groupes infinitésimaux commutatifs unipotents avec algèbre de Lie unidimensionnelle définis sur un corps algébriquement clos k, montrant qu’il y a exactement n tels schémas en groupes non isomorphes d’ordre fixé pn.
Fichier principal
Vignette du fichier
GOUTHIER_BIANCA_2024.pdf (1.22 Mo) Télécharger le fichier
Origin Version validated by the jury (STAR)

Dates and versions

tel-04699890 , version 1 (17-09-2024)

Identifiers

  • HAL Id : tel-04699890 , version 1

Cite

Bianca Gouthier. Rational actions of infinitesimal group schemes. Mathematics [math]. Université de Bordeaux, 2024. English. ⟨NNT : 2024BORD0123⟩. ⟨tel-04699890⟩
0 View
0 Download

Share

More