Advanced solutions of management for microgrids with high penetration of renewable energy resources under uncertainty
Solutions avancées de gestion pour les micro-réseaux à fort taux de pénétration des sources renouvelables sous l’incertitude
Résumé
In the context of the evolving electrical system, particular attention is given to the integration of renewable energy into the grids. The main objective of the thesis project is to develop solutions for the management of microgrids with a high penetration of renewable energy. This research project explores how to plan and anticipate the operation of the entities within a microgrid, particularly its storage system, by incorporating the uncertainties associated with photovoltaic production. To achieve this, stochastic models are proposed to optimize the management of these networks, enhance the reliability and quality of energy, and reduce operational costs using probabilistic forecasts.The work presents methods to model the uncertainty in photovoltaic production and demonstrates the effectiveness of stochastic approaches. It notably shows how these methods can reduce the economic risks associated with drawing power from the main grid and provide a valuable system service by decreasing the daily amplitude of drawn power. The thesis also proposes a method for generating a reduced set of scenarios for stochastic planning, thus contributing to better microgrid operation. This approach, based on modeling the distribution and dependence between the studied variables, also improves forecasts by assimilating observed data.
Dans un contexte d'évolution du système électrique, une attention particulière est portée sur l'intégration des énergies renouvelables dans les réseaux. L'objectif principal du projet de thèse est de développer des solutions pour le pilotage des micro-réseaux à forte pénétration d'énergie renouvelable. Ce projet de recherche explore comment planifier et anticiper le fonctionnement des entités d'un micro-réseau et en particulier son système de stockage, en intégrant les incertitudes liées à la production photovoltaïque. Pour cela, des modèles stochastiques sont proposés pour optimiser la gestion de ces réseaux, améliorer la fiabilité et la qualité de l'énergie, tout en réduisant les coûts opérationnels à partir de prévisions probabilistes.Les travaux présentent des méthodes pour modéliser l'incertitude dans la production photovoltaïque et démontrent l'efficacité des approches stochastiques. Ils montrent notamment comment ces méthodes peuvent réduire les risques économiques associés au soutirage depuis le réseau principal et offrir un service système précieux en diminuant l'amplitude journalière de puissance soutirée. La thèse propose également une méthode de génération d'ensemble de scénarios réduits pour la planification stochastique, contribuant ainsi à une meilleure opération des micro-réseaux. Cette approche, basée sur la modélisation de la distribution et la dépendance entre les variables étudiées, permet également d'améliorer les prévisions en assimilant des données observées.
Origine | Version validée par le jury (STAR) |
---|