Multi-fidelity Gaussian process regression for computer experiments - TEL - Thèses en ligne
Thèse Année : 2013

Multi-fidelity Gaussian process regression for computer experiments

Résumé

This work is on Gaussian-process based approximation of a code which can be run at different levels of accuracy. The goal is to improve the predictions of a surrogate model of a complex computer code using fast approximations of it. A new formulation of a co-kriging based method has been proposed. In particular this formulation allows for fast implementation and for closed-form expressions for the predictive mean and variance for universal co-kriging in the multi-fidelity framework, which is a breakthrough as it really allows for the practical application of such a method in real cases. Furthermore, fast cross validation, sequential experimental design and sensitivity analysis methods have been extended to the multi-fidelity co-kriging framework. This thesis also deals with a conjecture about the dependence of the learning curve (ie the decay rate of the mean square error) with respect to the smoothness of the underlying function. A proof in a fairly general situation (which includes the classical models of Gaussian-process based metamodels with stationary covariance functions) has been obtained while the previous proofs hold only for degenerate kernels (ie when the process is in fact finite-dimensional). This result allows for addressing rigorously practical questions such as the optimal allocation of the budget between different levels of codes in the multi-fidelity framework.
Fichier principal
Vignette du fichier
manuscrit.pdf (3.38 Mo) Télécharger le fichier

Dates et versions

tel-00866770 , version 1 (27-09-2013)
tel-00866770 , version 2 (11-10-2013)

Identifiants

  • HAL Id : tel-00866770 , version 1

Citer

Loic Le Gratiet. Multi-fidelity Gaussian process regression for computer experiments. Autres [stat.ML]. Université Paris-Diderot - Paris VII, 2013. Français. ⟨NNT : ⟩. ⟨tel-00866770v1⟩
3377 Consultations
5432 Téléchargements

Partager

More