Robust shape reconstruction from defect-laden data - TEL - Thèses en ligne Access content directly
Theses Year : 2015

Robust shape reconstruction from defect-laden data

Reconstruction robuste de formes à partir de données imparfaites

Simon Giraudot
  • Function : Author
  • PersonId : 772779
  • IdRef : 186171811

Abstract

Over the last two decades, a high number of reliable algorithms for surface reconstruction from point clouds has been developed. However, they often require additional attributes such as normals or visibility, and robustness to defect-laden data is often achieved through strong assumptions and remains a scientific challenge. In this thesis we focus on defect-laden, unoriented point clouds and contribute two new reconstruction methods designed for two specific classes of output surfaces. The first method is noise-adaptive and specialized to smooth, closed shapes. It takes as input a point cloud with variable noise and outliers, and comprises three main steps. First, we compute a novel noise-adaptive distance function to the inferred shape, which relies on the assumption that this shape is a smooth submanifold of known dimension. Second, we estimate the sign and confidence of the function at a set of seed points, through minimizing a quadratic energy expressed on the edges of a uniform random graph. Third, we compute a signed implicit function through a random walker approach with soft constraints chosen as the most confident seed points. The second method generates piecewise-planar surfaces, possibly non-manifold, represented by low complexity triangle surface meshes. Through multiscale region growing of Hausdorff-error-bounded convex planar primitives, we infer both shape and connectivity of the input and generate a simplicial complex that efficiently captures large flat regions as well as small features and boundaries. Imposing convexity of primitives is shown to be crucial to both the robustness and efficacy of our approach.
Au cours des vingt dernières années, de nombreux algorithmes de reconstruction de surface ont été développés. Néanmoins, des données additionnelles telles que les normales orientées sont souvent requises et la robustesse aux données imparfaites est encore un vrai défi. Dans cette thèse, nous traitons de nuages de points non-orientés et imparfaits, et proposons deux nouvelles méthodes gérant deux différents types de surfaces. La première méthode, adaptée au bruit, s'applique aux surfaces lisses et fermées. Elle prend en entrée un nuage de points avec du bruit variable et des données aberrantes, et comporte trois grandes étapes. Premièrement, en supposant que la surface est lisse et de dimension connue, nous calculons une fonction distance adaptée au bruit. Puis nous estimons le signe et l'incertitude de la fonction sur un ensemble de points-sources, en minimisant une énergie quadratique exprimée sur les arêtes d'un graphe uniforme aléatoire. Enfin, nous calculons une fonction implicite signée par une approche dite « random walker » avec des contraintes molles choisies aux points-sources de faible incertitude. La seconde méthode génère des surfaces planaires par morceaux, potentiellement non-variétés, représentées par des maillages triangulaires simples. En faisant croitre des primitives planaires convexes sous une erreur de Hausdorff bornée, nous déduisons à la fois la surface et sa connectivité et générons un complexe simplicial qui représente efficacement les grandes régions planaires, les petits éléments et les bords. La convexité des primitives est essentielle pour la robustesse et l'efficacité de notre approche.
Fichier principal
Vignette du fichier
2015NICE4024.pdf (40 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)
Loading...

Dates and versions

tel-01170277 , version 1 (01-07-2015)

Identifiers

  • HAL Id : tel-01170277 , version 1

Cite

Simon Giraudot. Robust shape reconstruction from defect-laden data. Other [cs.OH]. Université Nice Sophia Antipolis, 2015. English. ⟨NNT : 2015NICE4024⟩. ⟨tel-01170277⟩
312 View
203 Download

Share

Gmail Facebook X LinkedIn More