Tools and models for the study of some spatial and network risks : application to climate extremes and contagion in finance
Outils et modèles pour l'étude de quelques risques spatiaux et en réseaux : application aux extrêmes climatiques et à la contagion en finance
Résumé
This thesis aims at developing tools and models that are relevant for the study of some spatial risks and risks in networks. The thesis is divided into five chapters. The first one is a general introduction containing the state of the art related to each study as well as the main results. Chapter 2 develops a new multi-site precipitation generator. It is crucial to dispose of models able to produce statistically realistic precipitation series. Whereas previously introduced models in the literature deal with daily precipitation, we develop a hourly model. The latter involves only one equation and thus introduces dependence between occurrence and intensity; the aforementioned literature assumes that these processes are independent. Our model contains a common factor taking large scale atmospheric conditions into account and a multivariate autoregressive contagion term accounting for local propagation of rainfall. Despite its relative simplicity, this model shows an impressive ability to reproduce real intensities, lengths of dry periods as well as the spatial dependence structure. In Chapter 3, we propose an estimation method for max-stable processes, based on simulated likelihood techniques. Max-stable processes are ideally suited for the statistical modeling of spatial extremes but their inference is difficult. Indeed the multivariate density function is not available and thus standard likelihood-based estimation methods cannot be applied. Under appropriate assumptions, our estimator is efficient as both the temporal dimension and the number of simulation draws tend towards infinity. This approach by simulation can be used for many classes of max-stable processes and can provide better results than composite-based methods, especially in the case where only a few temporal observations are available and the spatial dependence is high
Cette thèse s’attache à développer des outils et modèles adaptés a l’étude de certains risques spatiaux et en réseaux. Elle est divisée en cinq chapitres. Le premier consiste en une introduction générale, contenant l’état de l’art au sein duquel s’inscrivent les différents travaux, ainsi que les principaux résultats obtenus. Le Chapitre 2 propose un nouveau générateur de précipitations multi-site. Il est important de disposer de modèles capables de produire des séries de précipitations statistiquement réalistes. Alors que les modèles précédemment introduits dans la littérature concernent essentiellement les précipitations journalières, nous développons un modèle horaire. Il n’implique qu’une seule équation et introduit ainsi une dépendance entre occurrence et intensité, processus souvent considérés comme indépendants dans la littérature. Il comporte un facteur commun prenant en compte les conditions atmosphériques grande échelle et un terme de contagion auto-regressif multivarié, représentant la propagation locale des pluies. Malgré sa relative simplicité, ce modèle reproduit très bien les intensités, les durées de sècheresse ainsi que la dépendance spatiale dans le cas de la Bretagne Nord. Dans le Chapitre 3, nous proposons une méthode d’estimation des processus maxstables, basée sur des techniques de vraisemblance simulée. Les processus max-stables sont très adaptés à la modélisation statistique des extrêmes spatiaux mais leur estimation s’avère délicate. En effet, la densité multivariée n’a pas de forme explicite et les méthodes d’estimation standards liées à la vraisemblance ne peuvent donc pas être appliquées. Sous des hypothèses adéquates, notre estimateur est efficace quand le nombre d’observations temporelles et le nombre de simulations tendent vers l’infini. Cette approche par simulation peut être utilisée pour de nombreuses classes de processus max-stables et peut fournir de meilleurs résultats que les méthodes actuelles utilisant la vraisemblance composite, notamment dans le cas où seules quelques observations temporelles sont disponibles et où la dépendance spatiale est importante
Origine | Version validée par le jury (STAR) |
---|