Study of Volatile Organic Compounds (VOC) in the cloudy atmosphere : air/droplet partitioning of VOC - TEL - Thèses en ligne
Thèse Année : 2019

Study of Volatile Organic Compounds (VOC) in the cloudy atmosphere : air/droplet partitioning of VOC

Etude des composés organiques volatils (COV) dans l'atmosphère nuageuse au sommet du Puy de Dôme : partition air/goutte des COV et impact sur la chimie atmosphérique

Miao Wang
  • Fonction : Auteur
  • PersonId : 765501
  • IdRef : 183430549

Résumé

Volatile Organic Compounds (VOC), including saturated, unsaturated, and other substituted hydrocarbons, play a major role in atmospheric chemistry. They are primarily emitted by anthropogenic and biogenic sources into the atmosphere; they are also transformed in situ by chemical reactions, and more specifically, by photo-oxidation leading to the formation of ozone (O3) and Secondary Organic Aerosol (SOA). By altering the organic fraction of aerosol particles, VOC modify the Earth’s radiative balance through a direct effect (absorption and scattering of solar radiation) or through indirect effect by altering cloud microphysical properties. They also present a direct effect on human health and on the environment.During their atmospheric transport, VOC and their oxidation products, Oxygenated Volatile Organic Compounds (OVOC), may partition between the gaseous and aqueous phases depending on their solubility. Clouds have a significant effect on tropospheric chemistry by redistributing trace constituents between phases and by providing liquid water in which aqueous phase chemistry can take place. Indeed, during the cloud lifetime, chemical compounds and particularly VOC are efficiently transformed since clouds favor the development of complex “multiphase chemistry”. The latter presents several particularities. First, photochemical processes inside the droplets are important in the transformation of chemical compounds. Second, aqueous chemical reactions are efficient and can be faster than the equivalent reactions in the gas phase. This can be related to the presence of strong oxidants such as hydrogen peroxide H2O2 or Transition Metal Ions (TMI), which participate in the formation of radicals such as hydroxyl radicals (HO•) that favor oxidation processes. Furthermore, the presence of viable microorganisms has been highlighted and shown to participate in transformations of the chemical species. Finally, these transformations in clouds are also strongly perturbed by microphysical processes that control formation, lifetime and dissipation of clouds. These processes will redistribute the chemical species between the different reservoirs (cloud water, rain, particle phase, gaseous phase, and solid ice phase). In this frame, the transformation of VOC in the cloud medium can lead to the production of secondary compounds contributing to SOA formation, reported as “cloud aqSOA”. This secondary organic aerosol mass produced during the cloud lifetime could explain in part the ubiquity of small dicarboxylic and keto acids and high molecular-weight compounds measured in aerosol particles, fog water, cloud water, or rainwater at many locations, as they have neither substantial direct emission sources nor any identified important source in the gas phase. This aqSOA mass stays in the particle phase after cloud evaporation implying a modification of the (micro)physical and chemical properties of aerosol particles (particle size, chemical composition, morphology). This leads to modifications of their impacts on consecutive cloud or fog cycles (aerosol indirect effects) and of their interactions with incoming radiation by scattering/absorbing (aerosol direct effect). (...)
Les composés organiques volatils (COV), les hydrocarbures saturés, insaturés et autres hydrocarbures substitués, jouent un rôle majeur dans la chimie atmosphérique. Ils sont principalement émis par des sources anthropiques et biogéniques dans l'atmosphère; ils sont également transformés in situ par des réactions chimiques, et plus spécifiquement par photo-oxydation conduisant à la formation d'ozone (O3) et d'aérosol organique secondaire (SOA). En modifiant la fraction organique des particules d'aérosol, les COV modifient l'équilibre radiatif de la Terre par un effet direct (absorption et diffusion du rayonnement solaire) ou par un effet indirect en altérant les propriétés microphysiques des nuages. Ils présentent également un effet direct sur la santé humaine et l'environnement. Au cours de leur transport atmosphérique, les COV et leurs produits d'oxydation, les composés organiques volatils oxygénés (OVOC), peuvent se répartir entre les phases gazeuses et aqueuses en fonction de leur solubilité. Les nuages ​​ont un effet significatif sur la chimie troposphérique en redistribuant les traces de constituants entre les phases et en fournissant de l'eau liquide dans laquelle la chimie de la phase aqueuse peut avoir lieu. En effet, pendant la durée de vie des nuages, les composés chimiques et notamment les COV se transforment efficacement car les nuages ​​favorisent le développement d'une «chimie multiphasique». Cette dernière présente plusieurs particularités. Premièrement, les processus photochimiques à l'intérieur des gouttelettes sont importants dans la transformation des composés chimiques. Deuxièmement, les réactions chimiques aqueuses sont efficaces et peuvent être plus rapides que les réactions équivalentes en phase gazeuse. Cela peut être lié à la présence d'oxydants puissants tels que le peroxyde d'hydrogène H2O2 ou les ions métalliques de transition (TMI), qui participent à la formation de radicaux tels que les radicaux hydroxyles (HO •) qui favorisent les processus d'oxydation. De plus, la présence de micro-organismes viables a été mise en évidence et a montré sa participation aux transformations des espèces chimiques. Enfin, ces transformations dans les nuages ​​sont également fortement perturbées par des processus microphysiques qui contrôlent la formation, la durée de vie et dissipation des nuages. Ces processus redistribueront les espèces chimiques entre les différents réservoirs (eau de nuages, pluie, phase particulaire, phase gazeuse et phase de glace solide). Dans ce cadre, la transformation des COV dans le milieu nuageux peut conduire à la production de composés secondaires contribuant à la formation de SOA, appelés «nuage aqSOA». Cette masse d'aérosol organique secondaire produite pendant la durée de vie du nuage pourrait expliquer en partie l'ubiquité des petits acides dicarboxyliques et céto et des composés de haut poids moléculaire mesurés dans les particules d'aérosol, l'eau de brouillard, l'eau de nuage ou l'eau de pluie à de nombreux endroits, car ils n'ont ni sources d'émission directe ni aucune source importante identifiée en phase gazeuse. Cette masse d'aqSOA reste en phase particulaire après évaporation des nuages ​​impliquant une modification des propriétés (micro) physiques et chimiques des particules d'aérosol (taille des particules, composition chimique, morphologie). Ceci conduit à des modifications de leurs impacts sur les cycles consécutifs de nuages ​​ou de brouillard (effets indirects des aérosols) et de leurs interactions avec les rayonnements entrants par diffusion / absorption (effet direct des aérosols). (...)
Fichier principal
Vignette du fichier
2019CLFAC080_WANG.pdf (14.11 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02864762 , version 1 (11-06-2020)

Identifiants

  • HAL Id : tel-02864762 , version 1

Citer

Miao Wang. Study of Volatile Organic Compounds (VOC) in the cloudy atmosphere : air/droplet partitioning of VOC. Earth Sciences. Université Clermont Auvergne [2017-2020], 2019. English. ⟨NNT : 2019CLFAC080⟩. ⟨tel-02864762⟩
521 Consultations
1208 Téléchargements

Partager

More