Quantum simulation of electron transport in disordered two-dimensional transition metal dichalcogenides - TEL - Thèses en ligne
Thèse Année : 2020

Quantum simulation of electron transport in disordered two-dimensional transition metal dichalcogenides

Simulation quantique du transport électronique dans les dichalcogénures de métaux de transition bidimensionnels désordonnés

Résumé

The discovery of graphene in 2004 has inspired a great interest in two-dimensional (2D) materials. In recent years, semiconducting 2D materials, in particular, are in the limelight for their potential use in electronics and optoelectronics. From the perspective of metal-oxide-semiconductor field-effect transistors, their atomic thickness allows an enhanced electrostatic control and their self-passivated surface reduces the potential presence of charge traps. Most importantly, the presence of a bandgap, contrary to graphene, facilitates a high on/off ratio in logic devices. Among these semiconducting materials, transition metal dichalcogenides (TMDs), with their large variety of band alignments and bandgaps, have attracted great attention for their possible use in transistors, both as monolayer materials or combined in van der Waals heterostructures. For such applications, the TMD quality is a priority, since the presence of defects might significantly affect electron transport thus leading to performance degradation.The present thesis reports on the impact of various defects, which are often observed in experimental samples, on the transport properties of TMDs. The study is based on quantum transport simulations, which combine an atomistic tight-binding description of the system and the Green’s function formalism.The first part of the thesis briefly introduces 2D materials, including their properties, synthesis, and applications. The basics of the simulation approach are also detailed. In particular, a thorough review of model Hamiltonians for TMDs, with a specific focus on tight-binding models, is presented. Moreover, the Green’s function formalism, which is the methodology adopted for the quantum transport simulations performed in the present thesis, is briefly reviewed.In the second part of the thesis, two types of typical TMD defects are simulated, and the results physically interpreted.The first study concerns edge roughness in MoS2 ribbons, which play an important role in the miniaturization of TMD-based transistors. The second study focuses on twin grain boundaries, which are often present in polycrystalline MoS2 obtained by large-scaling synthesis approaches, as chemical vapor deposition or molecular beam epitaxy. The role of spin-orbit coupling, which is significantly large in TMDs, is also taken into account. The results of these studies are quantitatively analyzed in terms of quasi-ballistic, diffusive, and localized transport regimes.The main outcome of this thesis is a better understanding and prediction of the impact of defects on the transport properties of TMDs, with possible applications in the design of performant TMD-based devices.
La découverte du graphène en 2004 a suscité un grand intérêt pour les matériaux bidimensionnels (2D). En particulier, ces dernières années, les matériaux 2D semi-conducteurs sont à l'honneur pour leur utilisation potentielle en électronique et optoélectronique. Du point de vue des transistors à effet de champ, leur épaisseur atomique permet un contrôle électrostatique amélioré et leur surface auto-passivée réduit le risque potentiel de pièges de charge. De façon plus importante encore, contrairement au graphène qui est semi-métallique, la présence de la bande interdite dans les TMDs permet un rapport entre courants à l’état passant et à l’état bloqué élevé dans les dispositifs logiques. Parmi ces matériaux semi-conducteurs, les dichalcogénures de métaux de transition (TMDs), avec leur grande variété de bandes interdites et d'alignements de bandes, ont attiré une attention particulière pour leur possible utilisation dans les transistors, à la fois comme matériaux monocouches ou combinés dans des hétérostructures van der Waals. Pour de telles applications, la qualité des TMDs est une priorité, car la présence de défauts peut affecter de manière significative le transport d'électrons, conduisant ainsi à une dégradation des performances.La présente thèse rend compte de l'impact de divers défauts, qui sont souvent observés dans des échantillons expérimentaux, sur les propriétés de transport des TMDs. L’étude est basée sur des simulations de transport quantique, qui combinent une description atomistique de type liaisons fortes du système et le formalisme de la fonction de Green.La première partie de la thèse présente brièvement les matériaux 2D, y compris leurs propriétés, leur synthèse et leurs applications. Les bases de la méthode de simulation sont également détaillées. En particulier, une revue exhaustive des modèles hamiltoniens pour les TMDs, avec un accent particulier sur les méthodes des liaisons fortes, est présentée. De plus, le formalisme de la fonction de Green, qui est la méthodologie adoptée pour les simulations de transport quantique effectuées dans la présente thèse, est brièvement passé en revue.Dans la deuxième partie de la thèse, deux types de défauts typiques des TMDs sont simulés et les résultats physiquement interprétés. La première étude concerne la rugosité des bords des rubans MoS2, qui jouent un rôle important dans la miniaturisation des transistors à base de TMDs. La deuxième étude se concentre sur les joints de grains de type mirror-twin, qui sont souvent présents dans le MoS2 polycristallin obtenu par des approches de synthèse à grande échelle, comme le dépôt chimique en phase vapeur ou l'épitaxie par faisceau moléculaire. Le rôle du couplage spin-orbite, qui est important dans les TMDs, est également pris en compte. Les résultats de ces études sont analysés quantitativement en termes de régimes de transport quasi balistique, diffusif et localisé.Les principaux résultats de cette thèse sont une meilleure compréhension et prédiction de l'impact des défauts sur les propriétés de transport des TMDs, avec une application possible dans la conception de dispositifs performants basés sur les TMDs.
Fichier principal
Vignette du fichier
PARK_2020_diffusion.pdf (32.6 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02976072 , version 1 (23-10-2020)

Identifiants

  • HAL Id : tel-02976072 , version 1

Citer

Jejune Park. Quantum simulation of electron transport in disordered two-dimensional transition metal dichalcogenides. Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes [2020-..], 2020. English. ⟨NNT : 2020GRALT008⟩. ⟨tel-02976072⟩
232 Consultations
14 Téléchargements

Partager

More