Graphs, geometry, and representations for language models and networks of entities
Graphes, géométrie et représentations pour le langage et les réseaux d'entités
Résumé
The automated treatment of familiar objects, either natural or artifacts, always relies on a translation into entities manageable by computer programs. The choice of these abstract representations is always crucial for the efficiency of the treatments and receives the utmost attention from computer scientists and developers. However, another problem rises: the correspondence between the object to be treated and "its" representation is not necessarily one-to-one! Therefore, the ambiguous nature of certain discrete structures is problematic for their modeling as well as their processing and analysis with a program. Natural language, and in particular its textual representation, is an example. The subject of this thesis is to explore this question, which we approach using combinatorial and geometric methods. These methods allow us to address the problem of extracting information from large networks of entities and to construct representations useful for natural language processing.Firstly, we start by showing combinatorial properties of a family of graphs implicitly involved in sequential models. These properties essentially concern the inverse problem of finding a sequence representing a given graph. The resulting algorithms allow us to carry out an experimental comparison of different sequential models used in language modeling.Secondly, we consider an application for the problem of identifying named entities. Following a review of recent solutions, we propose a competitive method based on the comparison of knowledge graph structures which is less costly in annotating examples dedicated to the problem. We also establish an experimental analysis of the influence of entities from capital relations. This analysis suggests to broaden the framework for applying the identification of entities to knowledge bases of different natures. These solutions are used today in a software library in the banking sector.Then, we perform a geometric study of recently proposed representations of words, during which we discuss a geometric conjecture theoretically and experimentally. This study suggests that language analogies are difficult to transpose into geometric properties, and leads us to consider the paradigm of distance geometry in order to construct new representations.Finally, we propose a methodology based on the paradigm of distance geometry in order to build new representations of words or entities. We propose algorithms for solving this problem on some large scale instances, which allow us to build interpretable and competitive representations in performance for extrinsic tasks. More generally, we propose through this paradigm a new framework and research leadsfor the construction of representations in machine learning.
Le traitement informatique des objets qui nous entourent, naturels ou créés par l'homme, demande toujours de passer par une phase de traduction en entités traitables par des programmes. Le choix de ces représentations abstraites est toujours crucial pour l'efficacité des traitements et est le terrain d'améliorations constantes. Mais il est un autre aspect émergeant : le lien entre l'objet à représenter et "sa" représentation n'est pas forcément bijectif ! Ainsi la nature ambiguë de certaines structures discrètes pose problème pour la modélisation ainsi que le traitement et l'analyse à l'aide d'un programme informatique. Le langage dit ``naturel'', et sous sa forme en particulier de représentation textuelle, en est un exemple. Le sujet de cette thèse consiste à explorer cette question, que nous étudions à l'aide de méthodes combinatoires et géométriques. Ces méthodes nous permettent de formaliser le problème d'extraction d'information dans des grands réseaux d'entités ainsi que de construire des représentations géométriques utiles pour le traitement du langage naturel. Dans un premier temps, nous commençons par démontrer des propriétés combinatoires des graphes de séquences intervenant de manière implicite dans les modèles séquentiels. Ces propriétés concernent essentiellement le problème inverse de trouver une séquence représentant un graphe donné. Les algorithmes qui en découlent nous permettent d'effectuer une comparaison expérimentale de différents modèles séquentiels utilisés en modélisation du langage. Dans un second temps, nous considérons une application pour le problème d'identification d'entités nommées. A la suite d'une revue de solutions récentes, nous proposons une méthode compétitive basée sur la comparaison de structures de graphes de connaissances et moins coûteuse en annotations d'exemples dédiés au problème. Nous établissons également une analyse expérimentale d'influence d'entités à partir de relations capitalistiques. Cette analyse suggère l'élargissement du cadre d'application de l'identification d'entités à des bases de connaissances de natures différentes. Ces solutions sont aujourd'hui utilisées au sein d'une librairie logicielle dans le secteur bancaire. Ensuite, nous développons une étude géométrique de représentations de mots récemment proposées, au cours de laquelle nous discutons une conjecture géométrique théoriquement et expérimentalement. Cette étude suggère que les analogies du langage sont difficilement transposables en propriétés géométriques, et nous amène a considérer le paradigme de la géométrie des distances afin de construire de nouvelles représentations. Enfin, nous proposons une méthodologie basée sur le paradigme de la géométrie des distances afin de construire de nouvelles représentations de mots ou d'entités. Nous proposons des algorithmes de résolution de ce problème à grande échelle, qui nous permettent de construire des représentations interprétables et compétitives en performance pour des tâches extrinsèques. Plus généralement, nous proposons à travers ce paradigme un nouveau cadre et piste d'explorations pour la construction de représentations en apprentissage machine.
Origine | Version validée par le jury (STAR) |
---|