Data centers energy optimization - TEL - Thèses en ligne
Thèse Année : 2019

Data centers energy optimization

Optimisation de l’énergie dans les centres de données

Résumé

To ensure both good data center service performance and reasonable power consumption, a detailed analysis of the behavior of these systems is essential for the design of efficient optimization algorithms to reduce energy consumption. This thesis fits into this context, and our main work is to design dynamic energy management systems based on stochastic models of controlled queues. The goal is to search for optimal control policies for data center management, which should meet the growing demands of reducing energy consumption and digital pollution while maintaining quality of service. We first focused on the modeling of dynamic energy management by a stochastic model for a homogeneous data center, mainly to study some structural properties of the optimal strategy, such as monotony. Afterwards, since data centers have a significant level of server heterogeneity in terms of energy consumption and service rates, we have generalized the homogeneous model to a heterogeneous model. In addition, since the data center server's wake-up and shutdown are not instantaneous and a server requires a little more time to go from sleep mode to ready-to-work mode, we have extended the model to the purpose of including this server time latency. Throughout this exact optimization, arrivals and service rates are specified with histograms that can be obtained from actual traces, empirical data, or traffic measurements. We have shown that the size of the MDP model is very large and leads to the problem of the explosion of state space and a large computation time. Thus, we have shown that optimal optimization requiring a MDP is often difficult or almost impossible to apply for large data centers. Especially if we take into account real aspects such as server heterogeneity or latency. So, we have suggested what we call the greedy-window algorithm that allows to find a sub-optimal strategy better than that produced when considering a special mechanism like threshold approaches. And more importantly, unlike the MDP approach, this algorithm does not require the complete construction of the structure that encodes all possible strategies. Thus, this algorithm gives a strategy very close to the optimal strategy with very low space-time complexities. This makes this solution practical, scalable, dynamic and can be put online.
Pour garantir à la fois une bonne performance des services offerts par des centres de données, et une consommation énergétique raisonnable, une analyse détaillée du comportement de ces systèmes est essentielle pour la conception d'algorithmes d'optimisation efficaces permettant de réduire la consommation énergétique. Cette thèse, s'inscrit dans ce contexte, et notre travail principal consiste à concevoir des systèmes de gestion dynamique de l'énergie basés sur des modèles stochastiques de files d'attente contrôlées. Le but est de rechercher les politiques de contrôle optimales afin de les appliquer sur des centres de données, ce qui devrait répondre aux demandes croissantes de réduction de la consommation énergétique et de la pollution numérique tout en préservant la qualité de service. Nous nous sommes intéressés d’abord à la modélisation de la gestion dynamique de l’énergie par un modèle stochastique pour un centre de données homogène, principalement pour étudier certaines propriétés structurelles de la stratégie optimale, telle que la monotonie. Après, comme des centres de données présentent un niveau non négligeable d'hétérogénéité de serveurs en termes de consommation d'énergie et de taux de service, nous avons généralisé le modèle homogène à un modèle hétérogène. De plus, comme le réveil (resp. l'arrêt) d’un serveur de centre de données n’est pas instantané et nécessite un peu plus de temps pour passer du mode veille au mode prêt à fonctionner, nous avons étendu le modèle dans le but d'inclure cette latence temporelle des serveurs. Tout au long de cette optimisation exacte, les arrivées et les taux de service sont spécifiés avec des histogrammes pouvant être obtenus à partir de traces réelles, de données empiriques ou de mesures de trafic entrant. Nous avons montré que la taille du modèle MDP est très grande et conduit au problème de l’explosion d’espace d'états et à un temps de calcul important. Ainsi, nous avons montré que l'optimisation optimale nécessitant le passage par un MDP est souvent difficile, voire pratiquement impossible pour les grands centres de données. Surtout si nous prenons en compte des aspects réels tels que l'hétérogénéité ou la latence des serveurs. Alors, nous avons suggéré ce que nous appelons l’algorithme greedy-window qui permet de trouver une stratégie sous-optimale meilleure que celle produite lorsqu’on envisage un mécanisme spécial comme les approches à seuil. Et plus important encore, contrairement à l’approche MDP, cet algorithme n’exige pas la construction complète de la structure qui encode toutes les stratégies possibles. Ainsi, cette algorithme donne une stratégie très proche de la stratégie optimale avec des complexités spatio-temporelles très faibles. Cela rend cette solution pratique, évolutive, dynamique et peut être mise en ligne.
Fichier principal
Vignette du fichier
th2019PECS0063.pdf (13.12 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03120640 , version 1 (25-01-2021)

Identifiants

  • HAL Id : tel-03120640 , version 1

Citer

Léa Bayati. Data centers energy optimization. Operations Research [math.OC]. Université Paris-Est, 2019. English. ⟨NNT : 2019PESC0063⟩. ⟨tel-03120640⟩
312 Consultations
262 Téléchargements

Partager

More