Modelling and characterization of extreme fatigue risks for metallic materials
Modélisation et caractérisation des risques extrêmes en fatigue des matériaux
Résumé
This work is motivated by a series of questions raised by an industrial issue in material reliability and is divided into two parts. The first one consists in estimating an extreme failure quantile from trials whose outcomes are reduced to indicators failure of the tested specimen. Making use of a splitting approach, we propose a sequential design method which gradually targets the tail of the distribution by sampling under truncated distributions. The model is GEV or Weibull, and is estimated through an improved maximum likelihood procedure for binary data.The second axis aims at developing methodological tools to model fatigue life. To this end, we propose a first test method on composite hypotheses for data affected by additive noise. We handle the problem of maximal decrease of the power for tests on this kind of corrupted data. Comparisons of such tests are considered based on their performances with respect to the Neyman Pearson test between least favourable hypotheses. The second test procedure aims at testing for the number of components of a mixture distribution in a parametric setting. The test statistic is based on divergence estimators derived through the dual form of the divergence in parametric models. We provide a standard limit distribution for the test statistic under the null hypothesis, that holds for mixtures of any number of components k>2.
Ces travaux ont pour fil conducteur une application industrielle en fiabilité des matériaux et s'articulent autour de deux axes. Le premier porte sur l’estimation d’un quantile de défaillance extrême à partir de données dichotomiques de dépassements de seuils. Un plan d’expériences séquentiel est développé afin de cibler progressivement la queue de distribution et d'échantillonner sous des distributions tronquées, sur le modèle du Splitting. Des modèles de type GEV et Weibull sont considérés et estimés à travers une procédure de maximum de vraisemblance adaptée aux données binaires. Le deuxième axe de recherche concerne le développement d'outils méthodologiques permettant de déterminer la modélisation de la durée de vie d’un matériau. Dans ce cadre, une première méthode de test d’hypothèses composites sur des données affectées par un bruit additif est proposée. La statistique de test est construite à partir d’indicateurs de divergence et généralise le test du rapport de vraisemblance. Une deuxième procédure vise à tester le nombre de composantes d’un mélange dans un cadre paramétrique. La statistique du test est basée sur des estimateurs de divergences exprimées sous leur forme duale. La distribution limite obtenue pour la statistique de test sous l'hypothèse nulle s'applique également aux mélanges d'un nombre quelconque de composantes k > 2.
Origine | Version validée par le jury (STAR) |
---|