Films cristal liquide polymérisés et auto-organisation de nanoparticules d’or - TEL - Thèses en ligne
Thèse Année : 2018

Polymerized liquid crystal films and self-organization of gold nanoparticles

Films cristal liquide polymérisés et auto-organisation de nanoparticules d’or

Résumé

We study composite systems liquid crystals / polymers / nanoparticles. We use liquid crystal distortions to control the induced nanoparticle organization and also the polymerization of liquid crystal matrices that ensures the stability of the composites and allows to diversify the imaging and optical characterization techniques. First of all, we are interested in nematic and cholesteric liquid crystal films, with and without polymer, in the absence and in the presence of nanoparticles, the latter being chosen as spherical gold nanoparticles of diameter 6nm. Subsequently, we were interested in the polymerization of the so-called smectic oily streaks. The comparison between the different behaviors of the nanoparticles when isolated in solution or gathered and self-organized on a PVA substrate without liquid crystal (LC) or on a substrate with nematic or cholesteric LC, allowed us to understand how the nanoparticles and the matrix interact to reach the final structure of the composite system, characterized by new optical properties of the nanoparticles. We have established how a nematic matrix allows to preserve an almost perfect hexagonal order for gold nanoparticles deposited on the surface, while bringing them closer to each other (induced compression of the monolayer formed) to decrease disorder and distortion induced in the matrix, which significantly shifts the plasmon resonance of the gold nanoparticles. We have also demonstrated that the nanoparticles induce a change of orientation of the nematic molecules towards a tilted orientation, accompanied by a dewetting phenomenon of the matrix on top of the nanoparticles. The transition from a nematic matrix to a cholesteric matrix preserves the hexagonal order of the compressed monolayer for the nanoparticles but with an enhanced disorder, locally induced by the larger elastic distortion close to the air/interface and more specifically at the bottom of the undulations of the cholesteric matrix, which was evidenced by a simulation of a frustrated cholesteric between the two anchoring, planar on PVA and homeotrope with air. The cholesteric modulation structure acts as a mold so that the nanoparticles reproduce on the mesoscopic scale the cholesteric texture at the interface by forming ribbons that perfectly mimic the cholesteric modulations. We again evidence a phenomenon of dewetting, but smaller than for the nematic, in relation with the localization of the nanoparticles in the cholesteric tilted areas above the region of strong cholesteric splay distortion. Within the same cholesteric matrix, the increase of the concentration of nanoparticles causes a profound change in the optical properties of the nanoparticles. We show that it is related to the establishment of new structures for the nanoparticles, always induced by the modulated structure of cholesteric, which, in return is only slightly modified. As the concentration increases, one passes from a monolayer of highly disordered and compressed two-dimensional labyrinths up to 3D structures (aggregates) of controlled size and shape. The optical properties are modified in relation with a strong strengthening of the electromagnetic interaction between nanoparticles. The nanoparticles occupy the overall surface of the cholesteric modulations, which no longer play the role of mold, but are found to be truncated at the surface by the presence of nanoparticles. The fact that the modulated cholesterics is only poorly modified highlights the robustness of this cholesteric structure, but also the combined influence of the cholesteric elastic distortions and of the nanoparticle-induced anchoring on the nanoparticle organization and in return on the induced optical properties. Moreover, concerning the polymerization of smectic oily streaks, we have succeeded to preserve the smectic A texture in the nematic phase, in relation with the creation of a particularly robust polymer skeleton that mimics the initial smectic texture.
Dans cette thèse nous étudions des systèmes composites cristaux liquides / polymères / nanoparticules. Nous utilisons les déformations des cristaux liquides pour contrôler l’auto-organisation induite des nanoparticules et également la polymérisation des matrices cristal liquide pour assurer la stabilité des systèmes nanocomposites et diversifier les techniques de caractérisation d’imagerie et d’optique. Nous nous sommes tout d’abord intéressés aux films cristal liquide nématique puis cholestérique, sans et avec polymère, en l’absence et en présence de nanoparticules, ces dernières étant choisies sphériques de taille unique. Par la suite, nous nous sommes intéressés à la polymérisation des stries huileuses présentes dans la phase smectique A. La comparaison entre les différents comportements des nanoparticules lorsqu’elles sont isolées en solution ou rassemblées et auto-organisées sur un substrat PVA sans cristal liquide (CL) ou sur un substrat avec CL nématiques ou cholestériques, nous a permis de comprendre comment les nanoparticules et la matrice interagissent pour aboutir à la structure finale du système composite, caractérisée par de nouvelles propriétés optiques des nanoparticules. Nous avons établi comment une matrice nématique permettait de conserver un ordre hexagonal quasi-parfait pour des nanoparticules d’or déposées en surface, tout en les rapprochant les unes des autres (compression induite de la monocouche formée) pour diminuer désordre et déformation induits dans la matrice, ce qui décale significativement la résonance de plasmon des nanoparticules. Nous avons également mis en évidence que les nanoparticules induisent un changement d’orientation des molécules nématiques vers une orientation tiltée, accompagnée d’un phénomène de démouillage de la matrice au niveau des nanoparticules. Le passage d’une matrice nématique à une matrice cholestérique conserve l’ordre hexagonal de la monocouche comprimée pour les nanoparticules mais avec un plus grand désordre induit localement par la grande distorsion élastique en surface et au fond des ondulations de la matrice cholestérique mise en évidence par une simulation du cholestérique frustré entre les deux ancrages, planaire sur PVA et homéotrope avec l’air. La structure en modulation du cholestérique joue un rôle de moule de telle sorte que les nanoparticules reproduisent à l’échelle mésoscopique la texture cholestérique à l’interface en formant des rubans qui imitent parfaitement les modulations cholestériques. On retrouve le phénomène de démouillage, mais moins profond que pour le nématique, en lien avec la localisation des nanoparticules dans les zones tiltées au-dessus de la région de plus forte déformation en splay du cholestérique. Au sein de la même matrice cholestérique, l’augmentation de la concentration en nanoparticules entraine une modification profonde des propriétés optiques des nanoparticules. Nous montrons que c’est lié à la mise en place de structures nouvelles pour les nanoparticules, toujours induites par la structure modulée du cholestérique, qui, elle, n’est que peu modifiée. On passe, quand la concentration augmente, d’une monocouche en labyrinthes à deux dimensions fortement désordonnée et comprimée jusqu’à des organisations de tailles et formes contrôlées à trois dimensions (des agrégats). Les propriétés optiques sont modifiées en lien avec un fort renforcement de l’interaction électromagnétique entre nanoparticules. Ces dernières couvrent la totalité des modulations qui ne jouent plus le rôle de moule mais se retrouvent seulement tronquées en surface par la présence des nanoparticules. Ceci met en évidence la robustesse de cette structure cholestérique, mais également les rôles moteurs combinés des déformations élastiques du cholestérique et de l’ancrage induit par les nanoparticules sur les structures obtenues et en retour sur les modifications de propriétés optiques induites. Par ailleurs, concernant la polymérisation des stries [...]
Fichier principal
Vignette du fichier
GHARBI_Ines_these_2018.pdf (10.41 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03481921 , version 1 (15-12-2021)

Identifiants

  • HAL Id : tel-03481921 , version 1

Citer

Ines Gharbi. Films cristal liquide polymérisés et auto-organisation de nanoparticules d’or. Matériaux. Sorbonne Université; Université de Tunis El Manar, 2018. Français. ⟨NNT : 2018SORUS286⟩. ⟨tel-03481921⟩
96 Consultations
111 Téléchargements

Partager

More