Topological and measurable dynamics : allostery, quantitative orbit equivalence
Dynamique topologique et mesurée : allostérie, équivalence orbitale quantitative
Abstract
This PhD thesis lies at the interface between topological dynamics and measurable dynamics. First, I study the notion of allosteric actions. These actions are generically free in the sense of the topology but not generically free in the sense of the measure. This surprising behavior highlights the differences between invariant random subgroups and uniformly recurrent subgroups. The nascent theory of quantitative orbit equivalence is the second topic of this thesis. This is a strengthening of orbit equivalence, which aims to understand how metric structures on the orbits of the actions can be distorted. A large part of my work gravitates around one of the founding result of this theory: Belinskaya's theorem.
Cette thèse se situe à l'interface entre dynamique topologique et dynamique mesurée. Premièrement, j'y étudie la notion d'action allostérique. Ce sont des actions génériquement libres au sens topologique mais pas génériquement libres au sens de la mesure. Ce comportement étonnant met en valeur les nuances entre sous-groupes aléatoires invariants et sous-groupes uniformément récurrents. Un second sujet d'étude est l'équivalence orbitale quantitative, qui renforce l'équivalence orbitale. Il s'agit de comprendre comment les structures métriques sur les orbites des actions peuvent être distordues par équivalence orbitale. Une grande partie des travaux de cette thèse gravite autour d'un des théorèmes fondateurs de cette théorie : le théorème de Belinskaya.
Origin | Version validated by the jury (STAR) |
---|