Thermodynamic and thermophysical properties of high temperature liquids : application to combustible fuel
Propriétés thermodynamiques et thermophysiques des liquides à haute température : applications aux combustibles nucléaires
Résumé
During a severe accident involving the meltdown of the core of a pressurized water nuclear reactor, the nuclear fuel will react with the zircalloy cladding around it and the structural materials of the core to make a high temperature magma called corium. Depending on its composition and its temperature, the corium can stratify because of two non-miscible metallic and oxidic liquids. For some stratification configurations, the heat flow can focus on the vessel’s wall, threatening its integrity with a corium flowing outside of it. The aim of this thesis is to collect thermodynamic and thermophysic data on a prototypical corium, the U-Zr-Fe-O system. The thermodynamic data collected in this thesis are related to the definition of the liquid miscibility gap and the compositions of the liquids in the U-Zr-Fe-O system and its sub-systems, depending on the composition and the temperature. Compositions of interest were selected after performing thermodynamic calculation by the CALPHAD method with the TAF-ID V13 database. The corresponding samples underwent heat treatments and post-treatment analyses to measure the compositions of the liquids and to compare them to thermodynamic calculations. An iron rich liquid miscibility gap and a zirconium rich one were highlighted in the Fe-Zr-O system. Although calculations were in agreement with data from the first miscibility gap at 1990 °C, measurements in the zirconium rich miscibility gap at 2420 °C and 2650 °C reveal an underestimation of the zirconium quantity in the metallic liquid and its overestimation in the oxidic liquid by the model. Studies on the UO2-Zr-Fe system at 2423 °C show that the liquid miscibility gap definition and the compositions of the liquids depend on the quantity of iron in the system, the U/Zr ratio and corium oxidation degree. Furthermore, the zirconium molar fraction is underestimated by the model in the metallic liquid to the benefit of iron, and is overestimated in the oxidic liquid. Finally, the oxygen solubility in the metallic liquid is underestimated by the model. Thermophysic data were collected thanks to the improvement of the ATTILHA experimental setup, allowing the study of oxygen sensitive or radioactive liquids at high temperature by using a laser heating. Experimental values on liquidus and eutectic transformation temperatures of the oxygen-rich domain of the Zr-O system were acquired with this setup. Furthermore, the development of the aerodynamic levitation allows us the investigation liquids’densities for the Zr-Fe2O3 and the Zr-UO2 systems between 1884 °C and 2268 °C for different zirconium molar fractions. Densities of liquids from the Zr-Fe2O3 system were used to refine surface tension values acquired on the VITI-MBP setup at CEA Cadarache. These values confirmed the surfacting properties of the oxygen on these liquids. The experimental data collected during this thesis will be used to feed the databases and to improve the forecast of the corium’s behavior during a severe accident.
Lors d’un accident grave impliquant la fusion du cœur d’un réacteur nucléaire à eau pressurisée, le combustible nucléaire va réagir avec la gaine en zircalloy qui l’enrobe et les matériaux de structure présents dans le cœur pour former un magma à haute température appelé corium. Suivant sa composition et sa température, le corium peut se stratifier dû à la présence d’un liquide métallique et d’un liquide oxyde non-miscibles. Selon la configuration de cette stratification, une concentration du flux de chaleur peut avoir lieu sur la paroi de la cuve, menaçant son intégrité et risquant un écoulement du corium hors de celle-ci. L’objectif de cette thèse est d’obtenir des données thermodynamiques et thermophysiques sur un corium prototypique, le système U-Zr-Fe-O. Les données thermodynamiques recueillies dans cette thèse sont liées à la définition de la lacune de miscibilité liquide et à la composition des liquides dans le système U-Zr-Fe-O et de ses sous-systèmes, en fonction de la composition et de la température. Des compositions d’intérêt sont sélectionnées suite à des calculs thermodynamiques réalisés par la méthode CALPHAD grâce à la base de données TAF-ID V13. Les échantillons relatifs à ces compositions ont subi des traitements thermiques et des analyses post-opératoires afin de mesurer les compositions des liquides et de les comparer aux calculs thermodynamiques. Une lacune de miscibilité liquide riche en fer et une autre riche en zirconium ont été mises en évidence dans le système Fe-Zr-O. Alors que les données obtenues sur la première lacune à 1990 °C et 2614 °C montrent un bon accord entre le calcul et l’expérience, les mesures sur la lacune riche en zirconium à 2420 °C et 2650 °C indiquent que le modèle sous-estime la quantité de zirconium dans le liquide métallique et, à l’inverse, la surestime dans le liquide oxyde. Les études réalisées sur le système UO2-Zr-Fe à 2423 °C montrent que la présence de la lacune de miscibilité liquide et la composition des liquides dépendent grandement de la quantité de fer dans le système, du rapport U/Zr et du degré d’oxydation du corium. De plus, le modèle tend à sous-estimer la fraction molaire de zirconium dans le liquide métallique au profit du fer, et à la surestimer dans le liquide oxyde. Enfin, le modèle sous-estime grandement la solubilité de l’oxygène dans le liquide métallique. L’obtention de données thermophysiques a pu être réalisée grâce à l’amélioration du banc expérimental ATTILHA, rendant possible l’étude de liquides sensibles à l’oxygène ou radioactifs à hautes températures via un chauffage laser. Ce banc a permis de mesurer des valeurs expérimentales de température de liquidus et de transition eutectique sur le système Zr-O dans le domaine riche en oxygène. De plus, le développement de la lévitation aérodynamique sur ce banc permit l’étude de la masse volumique de liquides Zr-Fe2O3 et Zr-UO2 entre 1884 °C et 2268 °C pour différentes fractions molaires de zirconium. Les résultats de masse volumique des liquides Zr-Fe2O3 ont permis d’affiner des mesures de tension de surface réalisées sur le banc VITI-MBP au CEA Cadarache. Ces mesures confirmèrent les propriétés surfactantes de l’oxygène sur ces liquides. Les données expérimentales recueillies durant cette thèse pourront servir à alimenter les codes de calcul afin de mieux prédire le comportement du corium et le déroulement des accidents graves.
Origine | Version validée par le jury (STAR) |
---|