Swarm Robotics : distributed Online Learning in the realm of Active Matter - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Swarm Robotics : distributed Online Learning in the realm of Active Matter

Robotique en essaim : apprentissage en ligne distribué dans le domaine de la matière active

Résumé

CPUs / GPUs, it becomes technically possible to develop small robots able to work in swarms of hundreds or thousands of units. When considering systems comprised of a large number of in- dependent robots in interaction, the individuality vanishes before the collective, and the global behavior of the ensemble has to emerge from local rules. Understanding the dynamics of large number of interacting units becomes a knowledge key to design controllable and efficient robotic swarms. This topic happens to be at the core of the field of active matter, in which the sys- tems of interest display collective effects emerging from physical interactions without computation. This thesis aims at using elements of active matter to design and understand robotic collectives, interacting both at the physical level and the software level through distributed learning algorithms. We start by studying experimentally the aggregation dynamics of a swarm of small vibrating robots performing phototaxis (i.e. search of light). The experiments are declined in different confi- gurations, either ad-hoc or implementing a distributed and online learning algorithm. This series of experiments act as a benchmark for the algorithm, showing its capabilities and limits in a real world situation. These experiments are further expanded by changing the outer shape of the robots, modifying the physical interactions by adding a force re-orientation response. This additional effect changes the global dynamics of the swarm, showing Morphological Computation at play. The new dynamics is understood through a physical model of self-alignment, allowing to extend the experimental work in sillico and hint for unseen global effects in swarms of re-orienting robots. Finally, we introduce a model of distributed learning through stochastic ODEs. This model is based on the exchange of internal degrees of freedom that couples to the dynamics of the particles, equivalents in the context of learning as a set of parameters and a controller. It shows similar results in simulation as the real-world experiments and opens up a way to a large-scale analysis of distributed and online learning dynamics.
Avec la miniaturisation des composants électroniques et l’augmentation des performances des CPU / GPU modernes, il devient techniquement possible de développer de petits robots capables de travailler en essaims de centaines ou de milliers d’unités. Lorsque l’on considère des systèmes composés d’un grand nombre de robots indépendants en interaction, l’individualité s’efface devant le collectif, et le comportement global de l’ensemble doit émerger de règles locales. Comprendre la dynamique d’un grand nombre d’unités en interaction devient une connaissance clé pour concevoir des essaims robotiques contrôlables et efficaces. Ce sujet est au cœur du domaine de la matière active, dans lequel les systèmes d’intérêt présentent des effets collectifs émergeant d’interactions physiques sans calcul. Cette thèse vise à utiliser des éléments de la matière active pour concevoir et comprendre des collectifs robotiques, interagissant à la fois au niveau physique et au niveau logiciel par le biais d’algorithmes d’apprentissage distribués. Nous commençons par étudier expérimentalement la dynamique d’agrégation d’un essaim de petits robots vibrants effectuant la phototaxie (c’est-à-dire la recherche de lumière). Les expériences sont déclinées dans différentes configurations, soit ad-hoc, soit mettant en œuvre un algorithme d’apprentissage distribué en ligne. Cette série d’expériences sert de référence pour l’algorithme, en montrant ses capacités et ses limites dans une situation réelle. Ces expériences sont approfondies en changeant la forme extérieure des robots, ce qui modifie les interactions physiques en ajoutant une réponse en orientation aux forces extérieures. Cet effet supplémentaire modifie la dynamique globale de l’essaim, montrant que le computation morphologique est en jeu. La nouvelle dynamique est comprise grâce à un modèle physique d’auto-alignement, ce qui permet d’étendre le travail expérimental in sillico et de suggérer de nouveaux effet à grande échelle dans les essaims de robots qui se réorientent. Enfin, nous présentons un modèle d’apprentissage distribué par le biais d’équations différentielles stochastiques. Ce modèle est basé sur l’échange de degrés de liberté internes qui s’associent à la dynamique des particules, qui sont les équivalents dans le contexte de l’apprentissage à un ensemble de paramètres et à un contrôleur. Le modèle donne des résultats similaires en simulation à ceux des expériences réelles et ouvre la voie à une analyse théorique à grande échelle de la dynamique produite par l’apprentissage distribué en ligne.
Fichier principal
Vignette du fichier
140716_FERSULA_2023_archivage.pdf (43.15 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04483298 , version 1 (29-02-2024)

Identifiants

  • HAL Id : tel-04483298 , version 1

Citer

Jeremy Fersula. Swarm Robotics : distributed Online Learning in the realm of Active Matter. Machine Learning [cs.LG]. Sorbonne Université, 2023. English. ⟨NNT : 2023SORUS494⟩. ⟨tel-04483298⟩
36 Consultations
5 Téléchargements

Partager

Gmail Facebook X LinkedIn More