Scalability of electric axles for system-level design in the early development phases of electric vehicles - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Scalability of electric axles for system-level design in the early development phases of electric vehicles

Mise à l'échelle des entraînements électromécaniques pour la conception au niveau système dans les premières phases de développement des véhicules électriques

Résumé

The automotive industry is required to accelerate the development and deployment of electrified vehicles at a faster pace than ever, to align the transportation sector with the climate goals. Reducing the development time of electric vehicles becomes an urgent priority. On the other hand, the industry is challenged by the increasing complexity and large design space of the emerging electrified powertrains. The existing approaches to address component design, such as numerical methods exemplified by finite element method, computational fluid dynamic, etc., are based on a detailed design process. This leads to a long computational burden when trying to incorporate them at system-level. Speeding up the early development phases of electrified vehicles necessitates new methodologies and tools, supporting the exploration of the system-level design space. These methodologies should allow for assessing different sizing choices of electrified powertrains in the early development phases, both efficiently in terms of computational time and with reliable results in terms of energy consumption at system-level. To address this challenge, this Ph.D. thesis aims to develop a scaling methodology for electric axles, allowing system-level investigation of different power-rated electric vehicles. The electric axle considered in this thesis comprises a voltage source inverter, an electric machine, a gearbox, and a control unit. The scaling procedure is aimed at predicting the data of a newly defined design of a given component with different specifications based on a reference design, without redoing time and effort-consuming steps. For this purpose, different derivations of scaling laws of the electric axle components are thoroughly discussed and compared at component-level in terms of power loss scaling. A particular emphasis is placed on examining the linear losses-to-power scaling method, which is widely employed in system-level studies. This is because, this method presents questionable assumptions, and has not been the subject of a comprehensive examination. A key contribution of the presented work is the derivation of power loss scaling laws of gearboxes, which has been identified as a gap in the current literature. This is achieved through an intensive experimental campaign using commercial gearboxes. To incorporate the scaling laws at system-level and study the interaction between the scaled components, the energetic macroscopic representation formalism is employed. The novelty of the proposed method lies in structuring a scalable model and control for a reference electric axle to be used in system-level simulation. The novel organization consists of a reference model and control complemented by two power adaptation elements at the electrical and mechanical sides. These latter elements consider the scaling effects, including the power losses. The methodology is applied for different study cases of battery electric vehicles, ranging from light to heavy-duty vehicles. Particular attention is paid to assessing the impact of the linear power-to-losses scaling method on the energy consumption considering different power scaling factors and driving cycles, as compared to high-fidelity scaling methods.
L'industrie automobile est contrainte d'accélérer le développement et le déploiement des véhicules électrifiés à un rythme sans précédent, afin d'aligner le secteur du transport avec les objectifs climatiques. La réduction du temps de développement des véhicules électriques devient une priorité urgente. D'autre part, l'industrie est confrontée à une complexité accrue et à l'ampleur de l'espace de conception des chaînes de traction électrifiées émergentes. Les approches existantes pour aborder la conception des composants, notamment les méthodes numériques telles que la méthode des éléments finis, la mécanique des fluides numérique, etc., reposent sur un processus de conception détaillé. Cela entraîne une longue charge de calcul lorsqu'on essaie de les intégrer au niveau système. L'accélération des premières phases de développement des véhicules électrifiés nécessite de nouvelles méthodologies et de nouveaux outils, permettant d'explorer l'espace de conception au niveau système. Ces méthodologies devraient permettre d'évaluer les différents choix de pré-dimensionnement des chaînes de traction électrifiées dans les phases de pré-étude. Cette évaluation devrait se faire de manière efficace en termes de temps de calcul, tout en garantissant des résultats fiables en termes de consommation énergétique au niveau système. Pour relever ce défi, cette thèse de doctorat vise à développer une méthodologie de mise à l'échelle pour les systèmes d'entraînement électromécaniques, permettant l'étude au niveau système de différents véhicules électriques. Un système d'entraînement électromécanique se compose d'un ensemble comprenant un onduleur, une machine électrique, un réducteur mécanique et une unité de contrôle. La procédure de mise à l'échelle vise à prédire les données d'une conception nouvellement définie d'un composant donné avec des spécifications différentes sur la base d'une conception de référence, sans avoir à refaire des étapes qui demandent beaucoup de temps et d'efforts. À cette fin, différentes formulations de lois de mise à l'échelle des composants du système d'entraînement électromécanique sont examinées en détail et comparées au niveau composant en termes de mise à l'échelle de la perte de puissance. Un accent particulier est mis sur l'examen de la méthode de mise à l'échelle linéaire des pertes par une homothétie, qui est largement employée dans les études au niveau système. En effet, cette méthode présente des hypothèses discutables et n'a pas fait l'objet d'une étude approfondie. En outre, l'une des principales contributions de ce travail est la formulation des lois de mise à l'échelle des pertes de puissance des réducteurs mécaniques, qui ont été identifiées comme une lacune dans la littérature actuelle. Pour ce faire, une campagne expérimentale intensive a été menée sur des réducteurs mécaniques commerciaux. Pour intégrer les lois d'échelle au niveau système et étudier l'interaction entre les composants mis à l'échelle, le formalisme de la représentation macroscopique énergétique est utilisé. La nouveauté de la méthode proposée réside dans la structuration d'un modèle et d'une commande évolutifs du système d'entraînement électromécanique de référence à utiliser dans la simulation au niveau système. La nouvelle organisation consiste en un modèle et une commande de référence complétés par deux éléments d'adaptation de puissance du côté électrique et mécanique. Ces derniers éléments prennent en compte les effets d'échelle, y compris les pertes de puissance. La méthodologie est appliquée à différents cas d'étude de véhicules électriques à batterie, allant des véhicules légers aux véhicules lourds. Une attention particulière est accordée à l'évaluation de l'impact de la méthode de la mise à l'échelle linéaire sur la consommation d'énergie, en tenant compte de différents facteurs de mise à l'échelle de la puissance et des cycles de conduite, par rapport à d'autres méthodes de mise à l'échelle avec une haute-fidélité.
Fichier principal
Vignette du fichier
These_AROUA_Ayoub.pdf (16.49 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04523472 , version 1 (27-03-2024)

Identifiants

  • HAL Id : tel-04523472 , version 1

Citer

Ayoub Aroua. Scalability of electric axles for system-level design in the early development phases of electric vehicles. Electric power. Université de Lille; Universiteit Gent, 2023. English. ⟨NNT : 2023ULILN042⟩. ⟨tel-04523472⟩
0 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More